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This work addresses two related questions. The first question is what joint time-
frequency energy representations are most appropriate for auditory signals, in par-
ticular, for speech signals in sonorant regions. The quadratic transforms of the
signal are examined, a large clas that includes, for example, the spectrograms and
the Wigner distribution. Quasi-stationarity is not assumed, since this would neglect
dynamic regions. A set of desired properties is proposed for the representation: (1)
shift-invariance, (2) positivity, (3) superposition, (4) locality, and (3) smoothness.
Several relations among these properties are proved: shift-invariance and positivity
imply the transform is a superposition of spectrograms; positivity and superposition
are equivalent conditions when the transform is real; positivity limits the simulta-
neous time and frequency resolution (locality) possible for the transform, defining
an uncertainty relation for joint time-frequency energy representations; and local-
ity and smoothness tradeoff by the 2-D generalization of the classical uncertainty
relation. The transform that best meets these criteria is derived, which consists
of two-dimensionally smoothed Wigne" distributions with (possibly oriented) 2-D
gaussian kernels. These transforms are then related to time-frequency filtering, a
method for estimating the time-varying 'transfer function' of the vocal tract, which
is somewhat analogous to cepstral filtering generalized to the time-varying case.
Natural speech examples are provided.

The second question addressed is how to obtain a rich, symbolic description of the
phonetically relevant features in these time-frequency energy surfaces, the so-called
schematic spectrogram. Time-frequency ridges, the 2-D analog of spectral peaks.
are one feature that is proposed. If non-oriented kernels are used for the energy
representation, then the ridge tops can be identified with zero-crossings in the inner
product of the gradient vector and the direction of greatest downward curvature.
If oriented kernels are used, the method can be generalized to give better orien-
tation selectivity (e.g., at intersecting ridges) at the cost of poorer time-frequency
locality. Many speech examples are given showing the performance for some tra-
ditionally difficult cases: semi-vowels and glides, nasalized vowels, consonant-vowel
transitions, female speech, and imperfect transmission channels.
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Abstract

This work addresses two related questions. The first question is what joint time-
frequency energy representations are most appropriate for auditory signals, in par-
ticular, for speech signals in sonorant regions. The quadratic transforms of the
signal are examined, a large class that includes, for example, the spectrograms and
the Wigner distribution. Quasi-stationarity is not assumed, since this would neglect
dynamic regions. A set of desired properties is proposed for the representation: (i)
shift-invariance, (2) positivity, (3) superposition, (4) locality, and (5) smoothness.
Several relations among these properties are proved: shift-invariance and positivity
imply the transform is a superposition of spectrograms; positivity and superposition
are equivalent conditions when the transform is real; positivity limits the simulta-
neous time and frequency resolution (locality) possible for the transform, defining
an uncertainty relation for joint time-frequency energy representations; and local-
ity and smoothness tradeoff by the 2-D generalization of the classical uncertainty
relation. The transform that best meets these criteria is derived, which consists
of two-dimensionally smoothed Wigner distributions with (possibly oriented) 2-D
gaussian kernels. These transforms are then related to time-frequency filtering, a
method for estimating the time-varying 'transfer function' of the vocal tract, which
is somewhat analogous to cepstral filtering generalized to the time-varying case.
Natural speech examples are provided.

The second question addressed is how to obtain a rich, symbolic description of the
phonetically relevant features in these time-frequency energy surfaces, the so-called
schematic spectrogram. Time-frequency ridges, the 2-D analog of spectral peaks,
are one feature that is proposed. If non-oriented kernels are used for the energy
representation, then the ridge tops can be identified with zero-crossings in the inner
product of the gradient vector and the direction of greatest downward curvature.
If oriented kernels are used, the method can be generalized to give better orien-
tation selectivity (e.g., at intersecting ridges) at the cost of poorer time-frequency
locality. Many speech examples are given showing the performance for some tra-
ditionally difficult cases: semi-vowels and glides, nasalized vowels, consonant-vowel
transitions, female speech, and imperfect transmission channels.
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Chapter 1.

Introduction

In order to perceive speech and other sounds, the incoming sound wave must be

transformed into a variety of representations, each bringing forth different aspects

of the signal, its source, and meaning. Understanding how we perceive and how

machines can be made to perceive auditory signals means, in part. discovering

appropriate representations for the signals and how to compute them. For many

kinds of sounds, little is known in this respect. What auditory features, for example,

will distinguish a knock at the door from a footstep?

For speech signals, more is thought to be known. A phonetician will tell you, for

example, that the /ae/ in bad can be distinguished from the /1/ in bead by the

location of characteristic peaks in their respective spectra. He could even train you

to identify a wide variety of phonetic elements by looking at their spectrograms.

Formalizing this knowledge, however, so that a computer can do this well (in a

general setting) has proved hard.

An analogy may explain why. I could train you to distinguish a Mercedes from some

other car easily; I would just describe the hood ornament. t To train a machine

* I thank Mark Liberman for this example.
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to do this task would be much harder. Not only would I have to describe the hood

ornament, but I would also have to provide all the visual abilities that I take for

granted with a human - finding edges and boundaries, recognizing closed forms,

etc. I believe the failure to correctly provide the corresponding auditory abilities

- finding spectral "peaks" and temporal discontinuites, recognizing continuous

forms, etc. - is an important reason why the speech recognition problem has been

so difficult.

This problem is i.n some ways even harder than visual analysis. In vision, it is clear

that the two-dimensional image is a natural starting point. In audition, a similar 2D

representation is important, with time along one axis and frequency along the other.

But how should this idea be made precise (the well-known uncertainty principle of

fourier analysis is one of the thorny issues involved)? Should we use the conventional

spectrogram, the Wigner distribution, a pseudo-auditory spectrogram, or something

entirely new, and how should this decision be made?

In vision, the notion of edges, lines, and so forth obviously are important features

of an image. In audition, it is harder to decide what are the appropriate primitive

elements. Can some symbolic description summarize the relevant features of a

sound's time-frequency representation analogous to how a line drawing summarizes

an image?

These questions about the early steps in auditory processing are the topic of this

thesis. The emphasis will be on speech signals primarily because the intermediate

goals to which the initial computations must aim are better understood. I believe,

nevertheless, that many of the auditory processing issues discussed here are also

relevant for other kinds of sounds.
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The topic as stated is still too broad. Speech and other signals are made up of many

different kinds of components. For instance, speech has fairly smoothly changin,

vocalic regions that are quite different from the more discontinuous structure of

consonantal regions. It is unlikely that the same initial representations will be

appropriate for every kind of signal. The emphasis here will be on signals like those

found in the more continuous, sonorant regions of speech.

In the sonorant regions, we find an apparent feature is local spectral energy con-

centrations that vary in center frequency with time. These peaks are due, in part,

to the "resonances" of the vocal tract - the so-called tormants. The formant loca-

tions (labelled F1,F2,... in order of increasing frequency) specify the general vowel

quality, r-coloring and roundness, while the formant transitions between consonants

and vowels play an important role in consonant identification isee e.g. Chiba & Ka-

jiyama 1941; Fant 1960; Liberman, et al 1954; Ladefoged 1975j. A. Liberman, in

fact, claims that "...the second formant transition.. .is probably the single most im-

portant carrier of linguistic information in the speech signal ILiberman, et al 19671.

Thus, restricting the discussion to these regions is by no means uninteresting.

The initial speech processing envisioned here has been divided into two steps. The

first step, which produces a joint time-frequency representation of the signal energy,

is explored in Chapter 2 and Chapter 3. The second step, which produces a symbolic

representation that captures the acoustically relevant features present in the joint

time-frequency energy representation, is explored in Chapter 4 (see Figure 1.1).

One of the most difficult problems in deriving the form of such representations is

deciding which properties or axioms to assume at the outset. If strong assumptions

are made about the received signal, then rigorously defined optimal dctcction can
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Speech

P Time-Frequencyr (a)

IEnergy Representation
0

Schematic Spectrogram

* spectral peaks

A * time discontinuities

• spectral balance information

Acoustic Representation

- excitation - pitch

• vocal tract - formants (c)

* transmission channel

Figure 1.1. The initial speech processing is seen as divided nto two steps. (a) The

first step represents the signal energy as joint functions of time and frequency. (b)

The second step builds a symbolic representation of the significant features present

in the joint time-frequency energy representations. At th-s step, which we call the

schematic spectrogram, there is no undue commitment to the acoustic origin

of the features represented; it is a description of the signal, not its sources. (c)

In subsequent processing, these initial descriptions can be used to decompose the

signal into its acoustic sources.
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result. For example, if we assume that the received signal consists solely of a

known signal in additive Gaussian noise, then we could build a matched filter that

performs optimal Bayesian detection [e.g., see Van Trees 19681. The disadvantage

of such strong assumptions is that they are seldom universally valid for natural

perceptual signals.

On the other hand, weaker assumptions made about the received signal can be com-

bined with assumptions about the design of the representation, things like linearity,

continuity, locality, and stability, that can result in a solution [cf. Marr & Nishi-

hara]. These design criteria are chosen not on the basis of a specific signal model,

but instead as reasonable choices that should be appropriate for a wide range of

natural signals. The disadvantage of this approach is that the justification of the

design decisions is more intuitive and abstract.

In the best of circumstances, the two approaches would result in the same or similar

solutions to a problem. Thus the auditory processing would perform optimally (in

different senses) when both appropriate weak and strong assumptions are made

about the received signal.

Chapter 2 derives those joint time-frequency energy representations that satisfy

a small set of desirable properties; these properties are intentionally kept quite

general. Chapter 3 re-examines this problem in a more specific setting. Given a

(time-varying) model of speech production, what time-frequency representation of

the signal best depicts the 'transfer function' of the vocal tract while suppressing

the excitation. These two approaches, in fact, yield similar solutions.

In the initial part of Chapter 4, a general, heuristic argument is used to produce a

phonetically relevant, symbolic representation of the signal. In a later part, these
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solutions are briefly related to a signal detection model.

In Chapter 5, we look at a wide range of examples using these proposed methods.

We examine some traditionally difficult speech cases - glides and semi-vowels,

nasalized vowels, consonant-vowel transitions, female speech, and imperfect trans-

mission channels.

N.B.: For the figures in this thesis, time is in seconds, frequency in
Hertz, and energy in decibels, unless otherwise indicated.



Chapter 2.

The Time-Frequency
Energy Representation

This chapter explores the design of joint time-frequency energy representations for

speech signals. A set of desirable properties for such representations to satisfy is

proposed, and the relationships among these properties is discussed. This includes

a general treatment of the 'uncertainty' relations that arise. The signal transforms

that best satisfy these properties are then derived and examined.

2.1. The stationary case

We begin with an analysis of the special case of stationary signals. There is a large

literature for this case; Rabiner & Schafer [19781 and Flanagan [19721 provide good

reviews. The discussion of it here is very condensed and confined to topics that are

relevant to the sequel.

A stationary signal is used here to roughly mean a signal whose frequency content

does not vary with time. More precisely, we consider only determinstic signals that

are periodic and random signals that are correlation-stationary. For both kinds

of signals, the power spectrum, the fourier transform of the autocorrelation filnc-
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tion, captures naturally the energy present at each frequency. t Time is removed

from this representation; the power spectrum is a one-dimensional representation

of energy as a function of frequency.

For speech signals there are, of course, no completely stationary signals. We can,

however, deliberately utter vowels so that they are steady-state for as long as we

like. Figure 2.1 shows the spectrum of a *ong duration, voiced /i/. We find in the

spectrum many of the characteristic features of a steady-state vowel.

Let us examine the spectrum in Figure 2.1. Note the y-axis is logarithmic to com-

press the wide dynamic range of the speech. At a fine scale in this spectrum, there

are peaks spaced about every hundred Hertz; these are the harmonics of the pitch.

The somewhat larger scale peaks, of a few hundred Hz bandwidth, are the formant

peaks. The peak at about 300 Hz is Fl and the peak at about 2300 Hz is F2, which

is characteristic of an /i/ vowel for an adult male. Still larger scale shaping of the

spectrum, so called spectral balance, is due to the formant locations, the nature of

the voicing and the transmission channel.

The spectral structure of a vowel, therefore, is due acoustically to several factors:

(1) the vocal excitation - e.g., voiced; (2) the vocal tract transfer function, char-

acterized by its resonant frequencies - the formants, and (3) the transmission

characteristics - e.g., room acoustics. Determining these factors from the speech

(i.e., finding the formant frequencies, the pitch, etc.) is an important intermediate

step in speech analysis, since they decompose the signal into components of nearly

independent origin, and are (thus) starting points for the phonetician's description

of speech signal.

t For a deterministic signal z(t), its autocorrelation function is f x(t+r i)x(t) dt, and for a stationary
random process y(t), its autocorrelation function is t[y(t + r)y'(t).
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Figure 2.1. Short-time log spectrum of a steady-state /i/. The finest scale struc-

ture corresponds to the harmonics of the pitch, spaced about every 100 Hz. At an

intermediate scale are the formant peaks; e.g., F1 at 300 Hz and F2 at 2300 Hz. At

the largest scale is the overall spectral balance.
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Figure 2.2. Spectrum in Figure 2.1 smoothed to suppress the excitation. (a)

Log spectrum convolved with gaussian (cepstraI smoothing). (b) Power spectrum

convolved with gaussian (and then transformed to a log scale).
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A key point in separating these factors in the speech signal is that they operate

at somewhat different scales in its spectrum; the fine scale structure is due mostly

to the excitation, while the intermediate scale structure is due to the vocal tract

transfer function. A common technique for selecting a scale of interest is to smooth

the spectrum by linear convolution, or equivalently, to window the fourier transfo-r-

of the spectrum. The fourier transform of the log spectrum is called the cepstrum, its

dimension quefrencies, and the smoothing performed cepstral smoothing or liftering.

[Oppenheim 1969; Oppenheim & Shafer 19751. Figure 2.2a shows the spectrum in

Figure 2.1 after it has been cepstrally smoothed at a scale to emphasize the formants,

and suppress the excitation. We shall see in Chapter 3 that this operation, in fact,

effectively separates excitation from transfer function in certain idealized, stationary

cases.

It is smoothing the power spectrum, not its logarithm, that most easily generalizes

to the non-stationary case later. We will therefore select our scales of interest by

smoothing the power spectrum instead, or equivalently, by windowing its fourier

transform, the autocorrelation function. Figure 2.2b shows the spectrum in Figure

2.1 after it has been thus smoothed. t

What should the form of the convolution kernel in this smoothing operation be?

A desirable smoothing kernel would have good locality (or resolution) for a given

amount of smoothing. In other words, it would have small duration for the given

duration of its transform. These two durations are related by the uncertainty prin-

ciple: given a function h(z) with fourier transform H(s), if the variance of Ih(x)12 is

(Ax)2 and the variance of IH(s)12 is (As)', then Ax As > 1 [Bracewell 19781. Marr

& Hildreth [19801 proposed a gaussian smoothing kernel (in a vision task) because

t Empirically, power and log smoothing often produce similar results.
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it is the unique shape that meets the uncertainty principle with equality.

2.2. The quasi-stationary case

The previous section examined the analysis of stationary speech signals. No real

speech signal, of course, is purely stationary. If the frequency content of a signal

varies slowly with time, however, there is a simple extension of the previous results.

The idea is to examine the signal over a short duration window. Given a signal x(t)

and a window g(t), the short-time power spectrum at time t is

Sz(t,w) = g(r)x(t + r)e - ' dr . (2.2.1)

Considered as a two-dimensional function of time and frequency, this signal repre-

sentation is called a spectrogram. Many different window shapes have been used;

they typically are symmetric, unimodal, and smooth, e.g., a gaussian or a raised

single period of a cosine.

Signals for which a window can be found whose duration is long enough to allow

adequate frequency resolution, but short enough to allow adequate time resolution

are called quasi-stationary. The example of the previous section was, in fact, a

quasi-stationary vowel. Virtually all speech analysis methods in the past depend

on the quasi-stationary assumption.

2.3. Non-stationarity

There do exist signals for which no window duration is adequate. A very simple

such signal is the linear chirp, eiLmt, whose instantaneous frequency increases lin-

early with time. The quasi-stationary assumption breaks down for sufficently large

modulation slope m of the signal. Let us examine this claim.
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By the uncertainty principle, the product of the time duration At and the frequency

duration (bandwidth) Aw of a window is bounded below by 1/2. The window

duration and bandwidth, in turn, determine the time and frequency resolution,

respectively, in the short-time spectra. t In other words, if the window duration

is too small, then the frequency resolution will be poor and if the window duration

is too long, the time resolution will be poor. Further, for a non-stationary signal,

poor time resolution can also mean poor frequency resolution since the frequency

content will have changed over the duration of the window, blurring the spectrum.

To illustrate these points, consider the short-time spectrum of a linear chirp, eilmt2 ,

using a gaussian window, e - I2/ 2 . We can measure the the relative bandwidth of

the spectrum for different window sizes (a's) in terms of the standard deviation of

the spectrum (z.42 the half-power bandwidth), which is /(m
2

C
4 + 1)/2a2 , where

the units are seconds and radians. Note that when m $ 0, this grows without bound

as the window size becauses very small or very large. It has a minimum value of

V/ii, which occurs when the standard deviation of the gaussian is 1/v/-.

We see from this that the minimum possible bandwidth of the short-time spectrum

of a chirp (using a gaussian window) grows with increasing modulation slope. Fig-

ure 2.3 shows the short-time spectra of chirps of various modulation slopes using

windows that give the minimum bandwidth. For a slope of 50 Hz/msec, the chirp

peak has been broadened by several hundred Hz in the spectrum. The point here

is that, in theory, the usual quasi-stationary spectral analysis methods will give

poor resolution for sufficiently non-stationary signals. A (ew examples from natural

speech will show that such conditions arise in practice.

t This is made precise by Theorem D in Section 2.6.
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Figure 2.3. Short-time spectra of linear chirps of several modulation slopes using

gaussian windows that give the minimum bandwidth. At the largest slope, the chirp

peak is significantly broadened.
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Figure 2.4 shows cepstrally smoothed, short-time spectra of various /w/,s, uttered

first slowly and then increasingly rapidly. The spectrogram window used was a

gaussian of 4 msec standard deviation, which has an effective duration of about a

pitch period, the minimum duration that gives a reasonably stable spectral esti-

mate. The cepstral window is also chosen as brief as possible, while still removing

the harmonic peaks. Notice that the peak in the spectrum at about 1500 Hz. corre-

sponding to F2, grows in bandwidth with the increasing slope of F2 as seen in the

corresponding spectrograms in Figure 2.5. In case (c), where the F2 slope is about

40 Hz/msec, F2 is so broadened that its peak (i.e., the local maximum) is lost in

the short-time spectrum. Such an F2 slope is not uncommon for a /w/. In /j/s, F2

can have large negative slopes, and in /r/ contexts, F3 can have very steep slopes;

see Figure 2.6. At consonant-vowel transistions, where the formant trajectories are

considered very important for stop consonant identification iLiberman, et al 19541,

the formant motion can also be very rapid; again see Figure 2.6.

It is worth noting that natural sounds other than the human voice can produce

non-stationary signals that are "chirped." For instance, bird song and bat cries

contain many rapid FM chirps [Greenewalt 1968; Marler 1979; Neuweiler 1977]. If

a sound source is in relative motion to the listener then Doppler effects can cause

large frequency shifts in the received signal across time [e.g., Dudgeon 19841. +

Glissandi of various musical instuments provide still more examples of signals that

contain rapidly time-varying spectral content.

It is also suggestive that neurophysiologists have found that a large population of

the auditory cells in the mammalian cochear nucleus do not respond optimally to

t Some bate (the so-called CF bats) emit continuous tones, evidently depending on Doppler shifts for
echolocation.
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Figure 2.4. Cepstrally smoothed, short-time spectra of /w/'s, uttered first very

slowly, then increasingly rapidly. In (c), F2 is so broadened by the analysis that its

peak (i.e., the local maximum) disappears. Cf Figure 2.5.
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Figure 2.5. Wide-band spectrograms of the /w/'s used in Figure 2.4. Note that

F2 remains clearly visible with increasing slope in the two-dimensional display.

continuous tones, but instead to sweep tones, with different populations responding

to different preferred modulation slopes ranging over ±15 Hz/msec [Moller 1978;

Britt & Starr 1976]. Further, psychophysical adaptation studies have shown similar

directional selectivity in the human auditory system [Kay & Matthews 1972; Regan

& Tansley 19791.

The above comments are meant to call into question the validity of the quasi-

stationary assumption for speech and other auditory signals. We have seen that

speech is not always quasi-stationary, even in the sonbrant regions. Assuming so,

means that important features will be missed, having been blurred by the anal-
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ysis. It is interesting to note that while the individual short-time spectra of the

non-stationary signals described above give a poor description of the signals, their

spectrograms are nevertheless quite legible. This is because when we look at a

spectrogram, we are not confined to examining them one-dimensionally along single

frequency slices, but instead we see a two-dimensional time and frequency surface.

In other words, time is not used as a parameter that varies over a family of spectra,

but as one of the intrinsic dimensions of the representation.

I believe, in fact, that thinking of the initial speech processing as consisting of a

family of independent one-dimensional spectral analyses parameterized by time is

inappropiate. The problem should be thought of as a joint time-frequency analysis,

with the relationships and trade-offs between the two dimensions directly addressed,

which brings us to the next section.

2.4. Joint time-frequency representations

Various ways have been used to express signal energy as a joint function of time

and frequency. Certainly the most popular is the spectrogram,

2

Sz(t, W) = g()z(t + r)eiwt dr, (2.4.1)

which is just the short-time spectra described above displayed two-dimensionally.

The fact that the simultaneous time and frequency resolution in the spectrogram is

bounded by the uncertainty relation has led others to seek representations that do

not have this limitation.

This is usually formulated in terms of the marginals (or projections) of the signal
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representation F(t, w) [Cohen 19661. Let

00

7r W = ' J F,(t,w) dw, (2.4.2a)

00

M(W) = J F.(t,,w) dt. (2.4.2b)
-00

Perfect time and frequency resolution in this formulation requires that

?rl(t) = Ix(t)12  and i'2(W) = IX(w) 2. (2.4.3)

An example of a joint time-frequency representation that satisfies these require-

ments is the Wigner distribution,

W(t,w) = J e-iwtx(t -r/2)z'(t - r/2) dr, (2.4.4)

-00

which is currently quite popular in the signal processing literature (Classen & Meck-

lenbriuker 1980a,c.

The Wigner distribution of an impulse, x(t) = 6(t - to) is W,(t, w) = 6(t - to), i.e.,

the signal energy is taken to lie on the vertical line t = to in the time-frequency

plane. Similarly, for a complex exponential, y(t) = eiw ot, the signal energy lies on

the horizontal line at w = wo (Wy(t,w) = 27r6(w - wo)), and for a linear chirp,

z(t) = ei(wot+ imt2), the energy lies on the slanted line w = mt + wo (W.(t,w) =

2xr6(w - wo - mt)) (see Figure 2.7a).

In contrast, the spectrogram of these signals consist ot broadened lines (see Figure

2.7b). There is, in fact, a simple relation between the spectrogram and the Wigner

distribution of a signal x(t):

S.(t, W) = !wg(t,W) **W.(t,W), (2.4.5)22..5
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Figure 2.7. Wigner distribution and spectrogram of some mono-component sig-

nals. (a) The Wigner distribution resolves these signals as perfectly narrow lines in

the time-frequency plane. (b) The spectrogram is a smoothed version of the Wigner

distribution (e.g., if the spectrogram window is a gaussian, then the smoothing ker-

nel is a 2-D gaussian). The lines are broadened in this representation.
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where ** denotes two-dimensional convolution and W is the Wigner distribution of

the window [Classen & Mecklenbriuker 1980c). If g(t) is a gaussian, 7

then its Wigner distribution is also simple; it is just a two-dimensional gaussian,

Wg(t, W) =Thus, the two-dimensional convolution of the Wigner

distributions in Figure 2.7a by a two-dimensional gaussian will give the spectrograms

in Figure 2.7b.

If the duration of the gaussian spectrogram window is decreased, then the 2-D

gaussian that, in essense, convolves the Wigner distribution to give the spectrogram

becomes narrower in time, but wider in frequency, and vice versa. It should be clear

from this example that the spectrogram does not meet the marginal requirement.

On the other hand, the Wigner distribution itself has some undesirable proper-

ties. In particular, multi-component signals give rise to cross terms that cannot

be attributed much physical significance. For example, the Wigner distribution of

x(t) = coswot is W 1 (t,w) = E[6(w - wo) + b(w + wo) + b(w)2cos 2wot] (see Figure

2.8a). The last term, which lies on a horizontal line at the frequency origin (varying

sinusoidily in amplitude), seems spurious. The spectrogram of cos wot, however, is

just two broadened lines at w = ±wO, which seems better behaved with respect to

superposition, since cos wot = I'eiwot + e-wot) (see Figure 2.8b). The cross term is,

in effect, smoothed out by the convolution that transforms the Wigner distribution

into the spectrogram.

These examples illustrate that there are various (possibly conflicting) properties

that we might desire of a time-frequency representation, e.g., good time and fre-

quency resolution, and superposition for multi-component signals. We shall, in fact,

approach the problem of choosing our time-frequency energy representation by first
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Figure 2.8. Wigner distribution and spectrogram for cos wot. (a) The Wigner

distribution of this signal has the 'spurious' cross term 6(w)2cos 2wot at the origin.

(b) The spectrogram does not show this term; it has been, in effect, smoothed out.
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specifying a set of desirable properties that the transform should satisfy, and then

deriving its form.

2.5. Design criteria for joint time-frequency representations

We will restrict the discussion to the quadratic transforms of the signal, which have

the form

F.(t,w) J J h(r, r2 ; t, w)x(rl)x'(r2 ) dr, dr2 , (2.5.1)

where h(rl, r 2 ; t, w) is an arbitrary function. This condition is irr osed because it

results in a particularly manageable class, and because the representation of energy

as a quadratic function of the signal seems reasonable by analogy to other definitions

of energy. The class is quite large and includes many of the joint time-frequency

representations that have been previously proposed, such as the spectrograms, the

Wigner distribution, and the Rihaczek distribution [cf. Claasen & MeckfenbrSiuker

1980cl.

From this class of representations, we seek ones that satisfy the following criteria:

(CI) Shift invariance: A shift in time or frequency of the signal should result in

a corresponding shift in time or frequency in the transform. Let y(t) = z(t - r) and

z(t) = etz(t). Then we require F,(t,w) = F(t - r,w) and Fz(t,w) F.(t,w - ).

This property is desirable if we want to interpret the two dimensions of the transform

as time and frequency.

Transforms satisfying this condition can be put in the forms

F(t, w) = 1- (t,L..) ** W2(t,w) (2.5.2)
2wr
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and

F.(t,w) = -1 [ (ra )Az(r, v)], (2.5.3)

where "**" denotes two-dimensional convolution, W, is the Wigner distribution

00

W2 (t, W) f C-"'x(t + rl/2)z'(t - r/2) dr, (2.5.4)
-00

0(t, w) is an arbitrary kernel function, 7 is the 2-D fourier transform in the form

'q(t,w,) = f f e'(-vt+'w)q(t,w)dtdw, 1(r,v) = 3[r(t,w)j, and A, is the

time-frequency autocorrelation function t

A ,,) = YIWz(t, w)1 f e-ivtx(t + r/2)x* (t - r/2) dt (2.5.5)

-c0

for x(t) [Claasen & Mecklenbriuker 1980c]. Note that for a spectrogram, 6(t,w) is

the Wigner distribution of the spectrogram window, by Eq. 2.4.5 and Eq. 2.5.2.

(C2) Positivity: The signal energy at a given point in time and frequency should

be real and positive: F(t,w) ? 0 for all x, t, and w. This seems appropriate

for interpreting the transform as an energy distribution. Some authors have argued

against the positivity requirement [e.g. Claasen & Mecklenbriuker 1980cl. We shall

examine the consequences of lifting this condition in the next section.

(C3) Superposltion: This idea is that the time-frequency representation of a

multi-component signal should be a simple superposition of its components. The

straight-forward linear formulation of this, i.e., Fz+,,(t,w) = F2 (t,w) + cF,(t,w),

however, is inconsistent with the quadratic nature of the transform, and the shift-

invariance property C1. This apparent shortcoming is also true, for example,

t Some authors call this the ambiguityfunction [e.g., Claasen & Mecklenbriuker 1980a); others reserve
this term for IA.(r, v)I2 [e.g., Van Trees 19681.
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of the spectrogram (Eq. 2.4.1). Nevertheless, we usually think of the conven-

tional spectrogram as being well-behaved under superposition. This is because

non-overlapping components do superimpose, i.e., S+, (t, w) = S (t, W) + Sy(t, w)

when S.(t,w)Sy(t, w) = 0. There are no cross terms in this case. On the other hand,

the Wigner distribution does not have this property, suffering from cross terms to

which there cannot be attributed much physical significance.

We shall require this property for our time-frequency representation, namely

F.+,(t,w) = F.(t,w) + F,(t,w) when Fz(t,w)Fy (t,w) = 0. (2.5.6a)

More generally, we would like F,+,(t, w) ; F(t, w)+Fy(t, w) when F(t, w)Fy (t, W)

0. Stated more precisely, we require for any E > 0, there exists a 6 > 0 such that

f.+y(t,,w) - [F.(t,w) + F,(t,w)]I < c when IF(t,w)Fy(t,w)l < 6. (2.5.6b)

(C4) Locality: Signal energy that is localized in time-frequency should remain

localized in time-frequency in the transform. The advantage of the Wigner distri-

bution is that it is perfectly localized according to various criteria, such as preserving

the marginal distributions (Eq. 2.4.3) and the finite support properties [see Claasen

& Mecklenbriuker 1980a. t The Wigner distribution, however, does not satisfy

the positivity (C2) or superposition (C3) properties, as indicated earlier. In fact,

positivity (and thus, as we shall see, superposition) is inconsistent with the time and

frequency marginal conditions [Claasen & Mecklenbriuker 1980c]. Fortunately, for

our purposes, we do not require perfect locality, so we can relax the above conditions

somewhat.

The finite support property states that if a signal has finite extent in time or frequency then its
representation will have the same extent in the corresponding variable.
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From Eq. 2.5.2, the transform kernel 4(t,w) can be viewed as the point spread

function on the perfectly localized Wigner distribution. We can therefore measure

the locality of the transform in time and frequency in terms of the variances

at = f f t2 10(t, ))I 2 dt dw-f f 10(t,W) 12 dt da (25.a

and

= f f 21(t,w)12 dtdw ' (2.5.7b)

where we assume that the center of mass of I(t, W) 12 is at the origin. *

In general, these two measures are not enough; an additional locality measure is

important, the covariance

f f twl¢(t, w)1 2 dt dw
f fI(t,w)J2 dtdw (2.5.7c)

Together, at, a,, and at, determine the covariance matrix and the associated con-

centration ellipse in the (t, w) plane,

a2" oa / 1. (2.5.8)

When at, = 0, the major and minor axes of the concentration ellipse coincide with

the time and frequency axes (Figure 2.9a). More generally, the concentration ellipse

The generality of this approach depends on the Wigner distribution uniquely satisfying 'perfect'
locality. Cohen has shown that a quadratic transform that satisfies the shift-invariance property

(Cl) will meet the time and frequency marginal conditions (Eq. 2.4 3) if O(r, 0) = 1 for all r and
0(0, i) - for all P,. These marginal conditions essentially guarantee that an impulse and a complex
exponential are not 'blurred' by the time-frequency representation, but are not strong enough to
also guarantee that a linear chirp is not 'blurred' (see Figure 2.7a). This additional condition is
met uniquely by the Wigner distribution. In other words, we inter.ret perfect locality to mean that
the signal transform does not spread the signal energy in any direction in time-frequency (not just
the horixontal and vertical directions). We postpone a more thorough discussion of this point until

Section 2.8, when the necessary mathematical machinery will be i-troduced.
* This assumption is not very restrictive on the form of the transform, since we can always shift 0(t, w)

in time and frequency to satisfy it. This shift, in turn, shifts the transform in time and frequency.
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(a) (b)

time time

Figure 2.9. Concentration ellipses for transform kernels. (a) Non-directional kernel

(at,, = 0): the co-ordinate axes can be re-scaled to make the concentration ellipse a

circle. Thus viewed, the corresponding transform spreads the signal energy equally

in all time-frequency directions. (b) Directional kernel (at, 0 0): the co-ordinate

axes cannot be re-scaled to make the concentration ellipse a circle. The correspond-

ing transform always has better resolution in some time-frequency directions than

others.

may be oriented obliquely relative to the co-ordinate axes (Figure 2.9b). We shall

call transforms that satisfy the condition at, = 0 on their kernel non-directionally

localized. This name is appropriate since we can rescale the co-ordinate axes to

make the concentration ellipse a circle under this condition. Thus viewed, the

transform spreads energy uniformly in all directions in time-frequency. On the other

hand, if at,, 0, then this does not hold, and the transform will be directionally

localized, always having better resolution in some time-frequency directions than

others regardless of the scaling of the axes.

The analysis of the non-directional transforms is more straight-forward. We there-

fore restrict our attention to this case until Section 2.8, when we shall examine the
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more general case. We will see there that the principal results are essentially the

same as non-directional case, suitably generalized. The analysis, however, is more

complex, and is thus best left until later.

To summarize, given a non-directional transform (at, = 0), at and a. measure its

degree of locality in time and frequency. The smaller at and a , are, the better the

time and frequency resolution.

(C5) Smoothne.s: Similar to the stationary case, different aspects of the speech

signal can arise at different scales in time-frequency. For example, voiced excitation

can give rise to fine scale structure on the order of the pitch period in the time

dimension and the fundamental frequency in the frequency dimension. The formant

structure, on the other hand, arises at a somewhat larger scale. Thus, one of

the design parameters for our transform is the scale in time-frequency we wish to

examine. Said differently, we want the transform to be smooth in time-frequency

to a given degree.

This notion of scale can be be formalized by measuring the distribution of the spatial

frequencies present in F(t, w), i.e., the distribution of energy about the origin of its

2-D fourier transform. Since 7[F.(t, w)I = $(r, v)A,(r,v) (Eq. 2.5.3), the relative

amount of spread is determined by the choice of Z(r, v), which windows the time-

frequency autocorrelation function. We can measure this spread in terms of the

variances

2 f f r2 1(r v) 12 dr dv (2.5.9a)
=ffl(r,i)~drdv

I fI v1V(r, V) 12 dr dL/

E2= f f I(rv)1 2 drdv (2.5.9b)a ffd(r'V)j2drdv
and
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f f TL, I(r,V ,) dr dv
f f (rV)12drdv(

where we assume that the center of mass of ID(r, V)1
2 is at the origin. t These

determine the covariance matrix and the associated concentration ellipse in the

(r, V) plane,

(,r
E2 ) (2.5.10)

When E, = 0, we call the transform non-directionally smooth. In this case, it is

possible to rescale the co-ordinate axes to make the concentration ellipse a circle.

and thus viewed the transform smoothes the signal in time-frequency uniformly itn

all direction in time-frequency. On the other hand, if E,, - 0, then this does not

hold, and the transform will be directionally smooth, always smoothing more in

some time-frequency directions than others regardless of the scaling of the axes.

Just like the locality condition, we will restrict attention now to the non-directional

transforms. We consider the more general case in Section 2.8.

To summarize, given a non-directional transform (E=0o), E, and E, measure its

scale in time and frequency. The smaller E, and E, are, the larger the selected

scales.

Observe at this point the parallels between the stationary and non-stationary anal-

yses. If we think of the Wigner distribution as the non-stationary analog to the raw

power spectrum, then the time-frequency autocorrelation function (the Wigner dis-

tribution's 2-D fourier transform) is the 2-D analog to the autocorrelation function

(the power spectrum's fourier transform). Further, windowing the time-frequency

autocorrelation function smoothes the Wigner distribution, just as windowing the

This assumption will be true if the transform is reaL
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autocorrelation smoothes the raw spectrum. In both cases, the design decisions

for the resulting transform require selecting a convolution kernel that satisfies both

locality and smoothness requirments. In fact, we shall see in the next chapter that

the analogy is even closer.

2.6. Relations among the design criteria

The various design criteria for our time-frequency energy representation are not

independent. We shall state the important relationships among them in this section.

Throughout this section we assume that the input signal x(t) is finite energy, (i.e.,

XC2) and that F2 (t,w) is a quadratic transform of the signal. This means that
00

F (t,w) = (Tx,x) where (z,y) = f x(a)y*(a) da and Tt, is a (bounded) linear
-00

operator on £2.

@ Shift-invariance & Positivity: Together these imply that the transform can

be expressed as a superposition of spectrograms. t

Theorem A. Let F (t, w) be positive and shift-invariant. Then it has the form

00

F,(t,w) = J S(t,w;go) da, (2.6.1)

-00

where S. (t, w; g) is the spectrogram having g as its window.

Proof: The positivity of F, (t, w) means that Tt,w is a positive operator and therefore

has a square root A, i.e.,

F, = (A*Ax, x) = (Ax, Ax) = IIAxl12, (A.1)

Bouachache, et al (19791 incorrectly state that a positive and shift-invariant quadratic transform is
necessarily a spectrogram. Claasen & Mecklenbriuker 11984) point out this error, mentioning that
linear combinations of spectrograms must be included.
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where IIX(a)1 2 I f Iz(aH) 2 da [see Rudin 19731. Representing the linear operator A

in terms of its impulse response At, [z(a)[ - f h(r, a; t, w)x(r) dr and substituting

into Eq. A.1 gives

00 2

F (t, w) f h(a~r;t~w)(r)dr da. (A.2)

By time and frequency shift-invariance,

00 2

F(t +a, w + ) = f h(a, r; t, w)x(r + a)e - ' ( r ') d" d.

Setting t = w = 0 gives

Fz(a, ) = J J h(a, r; 0,O)z(r -- a)e-(Ta) dr da,

-00K

or, with g(r) = h(a,r; 0, 0),

=f g(r)(r + a)e-' (r+a) d, do.

From Eq. 2.4.1, we see the outer integrand is the spectrogram S,(t,w; g.), giving

Eq. 2.6.1. /

* Positivity & Superposition: The next theorem shows that positivity implies

superposition. In fact, it implies a strong form of superpoition, as in Eq. 2.5.6b.

Theorem B. If F(t,w) is positive, then

IFz+y(t,w) - Fz(t,w) + Fy(t,w)11
2 < 4F 1 (t,w)Fy(t,w). (2.6.2)
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Proof: From the elementary fact about inner products

1Ip+ q112 = tIpjj 2 + 2Re(p,q) + jjqjj'

it follows that

jlp + q112 - [11pl' + jjqjj][ = 4lRe (p, q l2

<5 41(p, q)12 .

Since (p,q) < jplll 1 q11,
!S 4[Ipjjf jq[112.

Substituting p = Ax and q = Ay above and using Eq. A.1 gives Eq. 2.6.2. ///

If the transform is real, the converse of this theorem is also true; i.e., superposition

implies either F or -F. is positive.

Theorem C. Let F2 (t,w) be real and satisfy superposition (Eq. 2.5.6a). Then

either F2 (t, w) or -F,(t, w) is positive.

Proof: Step 1. First we show under the hypotheses of the theorem (Tx, x) = 0

Tx =0.

Superposition says

(Tx, z)(Ty, y) =0 : (T(x + y),x + y) = (Tx, x) + (Ty,y). (C.1)

Since the form (Tx, x) is always real, (Tx, y) = (Ty, z)*, so

(T(x + y), x + y) = (Tx, x) + 2 Re(Tx, y) + (Ty, y).

Thus, from Eq. C.1,

(Tx, z)(Ty,y) = 0 * Re(Tx, y) = 0. (C.2)
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Substituting ix into Eq. C.2 shows that Im(Tx,y) = 0 also, so that

(Tx,x)(Ty, y) = 0 => (Tx, y) = 0. (C.3)

Suppose that (Tx, x) = 0. Then by Eq. C.3, (Tx, y) = 0 for all y. If wc let y = Tx,

then (Tx, Tx) = 0 and thus Tx = 0, as desired.

Step 2. We now show that (Tz,z) = 0 = Tz = 0 implies ±T is positive. Suppose

(Tx, x) > 0 and (Ty, y) < 0. Let z = kx + y where k is real. Then

(Tz, z) = k 2 (Tx, x) + 2k Re(Tx, y) + (Ty, y).

This is a quadratic in k, and since (Tx, x) (Ty, y) < 0, it has two distinct real zeroes.

However, since Tx 0 0, Tz = kTx + Ty has only one zero in k. Therefore, there

exists a value of k such that (Tz, z) = 0 but Tz :A 0, contradicting the hypothesis,

and implying ±T is positive. ///

This last theorem shows that we can replace the positivity condition (C2) with the

sole requirement that the transform be always real, and have an equivalent set of

properties. In other words, the transform will necessarily be positive if superposition

holds, and if positivity is abandoned, cross terms will necessarily prove a problem

for multi-component signals such as speech.

e Positivity & Locality: The positivity condition places a limit on the time-

frequency locality of the transform. When the transform is positive, it is some-

times convenient to measure locality in terms of the variances of O(t, w) instead of

[(t, w) 2 . We define

f f t2 0(t, w) dt dw (2.6.3a)
an' df f 0(t, w) dt d2.

and
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2 - f fw 2 (t, w ) dt dw
f f .(t, w) dt dw (2.6.3b)

where we assume that the center of mass of 0(t, wj) is at the origin. t When the

transform is positive, we claim that these variances are non-negative. To show this,

first suppose the transform is a spectrogram. Then 0(t, w) is the Wigner distribution

of the spectogram window g(t), and using Eq. 2.4.3, it is easy to see that

al- var~.jt)j2 and an = var G(w)l 2 ,  (2.6.4)

which are clearly non-negative [cf. DeBruin]. More generally, if the transform is

positive, it follows directly from Theorem A that

Sf covrlga(t)2 da and an = covarjG(w)2 dot (2.6.5)

where

f Jg.(t)j2 dt
-00

ca 00 (2.6.6).f f I g.,(t) 12dt da '

-00

These are again non-negative quantities.

Eq. 2.6.5 shows that a42 is the (weighted) average window variance in the represen-

tation of F. (t, w) as a superposition of spectrograms. Since a spectrogram's values

at a given time depend only on signal values under its window, we see that a positive

transform at a time t effectively depends only on signal values within- a few UT of t.

f This assumption is necessary for the term 'variance' to apply. It is not necessary, however, for the
uncertainty relations presented below to be true [cf. DeBruinf.

* This is a stronger notion of time locality than in the previous section. There, time locality essentially

measured how the transform spread an impulse. The Wigner distribution is perfectly localized in
this sense, because it represents the energy of an impulse at time to entirely on the vertical line
t = to in the time-frequency plane. This does not mean that the Wigner distribution's values at
time to depend only on the signal value at to. Quite the opposite is true, they depend on the entire
signal. (In fact, the signal can be recovered from the Wigner distribution's values at any fixed time
to (up to a multiplicative constant) Isee Claasen & Mecklenbriuker 1980al.) However, when the
transform is positive these two notions of locality coincide.
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The next theorem states an important uncertainty relation for positive transforms.

It bounds the simultaneous time and frequency resolution that can be obtained by

such a transform.

Theorem D. Let F.(t, w) be positive and shift-invariant. Then CTCQ >_ 2.

Proof: From Eq. 2.6.5,

2r2 fc, a2dco: JcaE2dct
where o. = varIg,(t)l2 and E, , varG,(w)I2. By the Schwarz Inequality,

,,20Q U/ crEd)'
The classical uncertainty relation applied to ga(t) gives aE, > so

2 2 > d 2 = 4

2 4 ~cd)

since f c, dc = 1 from Eq. 2.6.6. Taking square roots yieids the desired result. ///

a Locality & Smoothness: Just as in the stationary case, locality and smooth-

ness are conflicting properties. Greater smoothness means poorer locality and vice

versa, other things being equal. This follows formally from a two-dimensional gen-

eralization of the classical uncertainty relation.

Theorem E. If F,(t,w) is shift-invariant, then ao ,E, > and orE, > L, with

equality in both these relations iff

W(t, w) c e-t2 /2a'eW2 /2c. (2.6.7)
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Proof: First, we show that atE > 2, Let X(t,T) = Yf¢(t,,w)e"'dw. Then

§(r, L) = 7[((t, w)] = f A(t, r)e - t v dt. Applying the classical uncertainty relation

to A(t,r) w.r.t. t gives

A (t r) 12 dt I ( vl dv < t' IA (t,r)I12 dt v2¢(l v ' dv

(E. )

Integrating E.1 over r and using the Schwarz Inequality

0 ,\(tr)12 dt f l(r,V)12 dv )2dr

2- f 007 ( s21A(tr)12 ft v2 1$(r, v)!2 d, r

-00 -00

( tzA(t,r)I dtdr V D,(7, V },d dr) •.

( - oo -00-00

By Parseval's thereom,

00

IA(t,r)12 dr 1f(tW)12 dw

and

7 j (t,r) 2 dt = -1 l(,L)1dw. ( .b-00-0

Substituting Eq. E.3 into Eq. E.2 yields

1 i (r,v)I2dvdr < t21(t,IW)I2dtdw 7 , 2 V2I(rv)12dVdr)

00 00000000 -00

(E.4)

Since f f ¢(t, w) 2 dt d- = ff 1(r, V)12 drdv, we have < a EL-. By similar rea-

soning, < O aEr.
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Direct computation of the variances shows that if 0(t, w) is a 2-D gaussian (Eq. 2.6.7),

then these inequalities are satisfied with equality. Showing the converse is some-

what more involved. If these inequalities are satisfied with equality, then from the

classical uncertainty relation and the proof above, it follows that $(r, Lv) is Gaussian

in each of its variables. In other words,

* (r, a.) = e [ ( ) + ~~

= e -k( ' }r2 +(?)1, (E.5)

for all r and v, where a > 0 and c > 0. Thus, a(u/)r 2 
- b(LI) c(r)v - d(r).

Setting L, = 0 and r = 0 shows that b(V) = c(O)V2 + d(0) and d(r) = a(0)r 2 + b(0),

respectively, so

a(v,)r 2 + c(O)v + d(O) = c(r)L2 + a(O)r 2 - b(O). (E.6)

Twice differentiating this w.r.t. r and L, gives a"(v) = c"(r) for all r and V; thus

they are constant. Taylor expanding a(u) and c(r), substituting into Eq. E.6, and

equating terms shows that

(r,v) = e - () 2±c(), 2+P'( °)T 2 +b(°)l. (E.7)

By the symmetry of the two domains, 0(t, w) must have the same form. Together,

these imply that

A(t, r) = e -I1zt2 +3I 2 +Y '¢ / 2 +61

= e - [ t + ?2+ 3T , ~ +(E.S)

for all t and r. Taking the logarithm of Eq. E.8, clearing of fractions, and equating

terms shows that -yj = '2 = 0. Thus, a"(0) = 0 in Eq. E.7, which implies Eq. 2.6.7,

as desired. //
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2.7. Satisfying the design criteria - the Gaussian transform

From the last theorem, we see that a two-dimensional gaussian transform kernel

gives the best time-frequency locality for a given smoothness. The resulting repre-

sentation will be called the Gaussian transform of the signal. t By specifying -T

(- 202) and an (= 20r2) for this kernel we are, in effect, selecting a particular time

and frequency scale for the transform. We may choose any values we wish provided

aTanl :1 (positivity), and the resulting transform will best satisfy all our design

properties. The result is clearly a generalization of the solution in the stationary

case, where a gaussian convolution kernel of different sizes selected different spectral

scales.

When CTaQ= , this transform is equivalent to a spectrogram using a gaussian

window. For larger values of oTaa, this transform is equivalent to convolving such

a spectrogram with a 2-D gaussian.

As a note on its implementation, this last fact was used to compute the figures

below. A more direct method would be to compute the Wigner distribution and

then perform the 2-D convolution specified in Eq. 2.5.2. This is not very efficient in a

digital implementation, however, since the Wigner distribution has to be computed

at high sampling rates to avoid aliasing. *

By performing a convolution on a spectrogram, far fewer time and frequency samples

need to be computed, since the spectrogram is already a smoothed version of the

We have chosen this name for obvious reasons. This risks, however, confusion with the Gauss-
Weierstrass transformation Isee. Hille 19481. In fact, the Gaussian transform of the signal z(t) is the
two-dimensional Gauss-Weierstrass transformation of the Wigner Jistribution W.(t) (see De Bruijn
1967].

• In general, the Wigner distribution must be sampled in time at twice the Nyquist rate of the signal
[Claasen & Mecklenbriuker 1980bJ.
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Wigner distribution. Further, since the gaussian kernel is uncorrelated in time

and frequency, the 2-D convolution is separable, and can be performed as separate

1-D convolutions in the time and frequency directions, resulting in a relatively

inexpensive computation.

2.8. Directional time-frequency transforms

So far, we have assumed that the time-frequency energy representation was non-

directional in the sense that the covariances at, and E,,, of the transform kernel

were both zero. We shall now examine the consequences of lifting this condition.

We begin with an example. Consider the two transforms specified by the kernels

4'i (t, ,) = -

and

0 2 (t, W) = e
-
t2+tw+w2).

These transforms have identical a t and a, but differ in the sign of at". Figure

2.10 shows their concentration ellipses, and Figure 2.11 gives the transform of the

chirp e'12 for these two cases. Notice that the second transform broadens the chirp

much more than the first, which should be evident from the concentration ellipses.

The opposite would be true for the chirp e-' t . These transforms are directionally

sensitive, and using at and a, as the sole measures of time-frequency resolution is

obviously inadequate in such cases.

Why consider transforms with such behavior? One answer is to provide a general

treatment of time-frequency locality. Another answe- is that it is evidently possi-

ble to obtain better time-frequency resolution for some signals if the transform is

directionally 'tuned' to them than otherwise. This would mean that, in general,
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(a) (b)

time time

Figure 2.10. Concentration ellipses for transform kernels with complementary

orientation selectivity. (a) Concentration ellipse for 01(t, w) - e (t2 tW+W 2). (b)

Concentration ellipse for 02 (t, W) = e(t 2+ tw-W2).

(a) (

time time

Figure 2.11. Directional transforms for a linear chirp eilt. (a) Transform has

kernel in Figure 2.10a. (b) Transform has kernel in Figure 2.1Ob. The seoncd

transform broadens this chirp much more than the fi;st, which should be evident

from their concentration ellipses.
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we would need a family of transforms each tuned to a preferred time-frequency

orientation.

The theory of directional transforms is greatly simplified by a rotation of co-

ordinates. Let

Re (t,wu) Co a si (t" (2.8.1)
\-sinO B osO9 (t)

be the operator that rotates a point B radians in the time-frequency plane. Given a

time-frequency representation F (t, w) of a signal z(t), we can consider the rotated

representation formed by the composition F Re(t,w). Is this the time-frequency

representation of an actual signal? The answer is yes; if

X8(t) 2 e 2 X@W)e'( L - d+ dw, (2.8.2)
-00

then W., = WzRe [see Van Trees 19711. So if F has the kernel 0(t, w) and if G,

has the kernel O(t,w)Re, then G.t = FzRe. In other words, Eq. 2.8.2 rotates the

signal by 0 radians in time-frequency, thus the transform with the rotated kernel

applied to this signal will give the desired effect.

Relative to these new co-ordinates we can generalize some of the measures of the

previous sections. For example, consider

00

ire(t) = f FzRe(t,w),dw. (2.8.3)

-00

This is the marginal of the rotated transform along w. It follows that the time and

frequency marginals (Eq. 2.4.2) of F2 (t,w) satisfy irl = 7r6=o and 7r2 = 22r frO=f/ 2 .

If 7re(t) = IXe(t)12 , then we will say that the transform preserves the marginal

relative to the direction 0 in time-frequency. Interestingly, the Wigner distribution
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uniquely meets this requirement for all 0. The proof is a simple generalization of

Cohen's result. He showed that a shift-invariant quadratic transform perserves the

time marginal, i.e., 7ri(t) = Ix(t)12, iff ib(r,O) = 1 for all r. Using 3Y[PRal = oR),

which is easily verified, it follows that ire(t) = Ixe(t)12 iff $R0(r,O) = 1 for all r. This

implies that 4(r, Y) = 1, which corresponds to the Wigner distribution by Eq. 2.5.3.

This is the reason for considering the Wigner distribution 'perfectly localized' and

q(t, w) the 'point spread function' in time-frequency.

The amount of spread in time-frequency direction 0 can be measured by the variance

f tICR-(t,w) 2 dt dw

-00 -00

In the notation of the previous sections, at = o=0, cw = 0r4= ,2, and

U8 (cosO0 sinO 0 o a,' ) (t, Cos) 0 285

Let a2 be the maximum value and a2 be the minimum value a2. which corresponds

to the eigenvalues of the covariance matrix in Eq. 2.8.5. Further, let 0* be the max-

imum direction, which corresponds to the eigenvector Csn O" of the eigenvalue
(sinO

a2. In other words, a, and a2 are the maximum and minimum dimensions of the

concentration ellipse of O(t,w), and 0* is angle of the major axis of concentration

ellipse relative to the time axis. These three quantities conveniently specify the

time-frequency locality of the transform.

In an analogous manner, we can measure the smoothness of the transform in time-

frequency direction 0 by

f f r2 I$)RO1 (r,iL')l2 drdv(2.6
r2 -00-00

f f 14R. '(r,V)12 dr dv
-00-00
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In the notation of the previous sections, El = E8=0, El = Ee=,/, and

(eosO sin) Es2 sin " (2.8.7)

Let E2 be the maximum value and E2 be the minimum value of E2 and let 0' be the

maximum direction. These three quantities conveniently specify the time-frequency

smoothness of the transform.

We are now in a position to generalize Theorem E.

Theorem F. If F.(t,w) is shift-invariant, then UIE 2 > a , with

equality in both these relations iff

Proof, Applying Theorem E to the transform with kernel oR-1, we have <

02Er _ C2E1. Similarly, with the kernel OR$., I < OtE2 < a1 E 2 . The righthand

inequalities are satisfied with equality iff 9* = 0*. It follows from Theorem E that

Eq. 2.8.8 is a necessary and sufficient condition that all these inequalites are satisfied

with equality. ///

Generalizing Theorem D requires that we use the directional variance of O(t, w) not

1. f(t, W)tt , i.e.,

-00-00-00 - 0 (2.8.9)

f f ORj'(tw)dtdw
00-00

We define 11 and o~ as the maximum and minimum values of this variance, and

O' as the maximum direction.
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Theorem G. Let F.(t,w) be positive and shift-invariant. Then aar >.

Proof: Apply TheoreL1 D to the signal z-e. (t) and the transform with kernel OR- .

///

Corollary. If F (t, w) is positive and shift-invariant, then

2 > -

From Theorem F, we see that a two-dimensional gaussian transform kernel gives the

best time-frequency locality for a given smoothness. In this general case, however.

the gaussian kernel may be correlated in time and frequency, i.e. its concentration

ellipse may be oriented obliquely in the time-frequency plane. By specifying a7

(= 2a'), O2 (= 2o2), and 0* for this kernel we are, in effect, selecting a particular

time-frequency scale for the transform. By Theorem G, we may choose any v1ues

we wish provided ojaj 3' and the resulting transform will best satisfy all our

design properties.

When Ulotl = i, this transform is equivalent to a spectrogram with a rotated

gaussian window g.(t) [cf. Riley 1983, Dungeon 19841. For larger values of all,

this transform is equivalent to convolving such a spectrogram with a 2-D gaussian.

2.9. A speech example

In this section we examine a particular utterance, comparing the various signal

representations discussed above. The utterance is /wioi/ taken from "Wc owe Eve

a dollar", as produced by an adult male. This utterance has some rapid F2 motion,

which makes it useful as an example of non-stationary behavior in speech.
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2100 - 25861
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(a) (b)
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is .- - --- - -- -

(c)

Figure 2.12. Log magnitude spectrograms of the utterance /wioi/. (a) Wide-

band (gaussian window standard deviation of 1 msec). (b) Narrowband (standard

deviation of 15 rnsec). (c) Intermediate band (standard deviation of 4 msec).
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Figure 2.12a,b show the traditional wideband and narrowband spectrograms for this

utterance. These are spectrograms computed with gaussian windows of standard

deviation 1 msec and 15 msecs, respectively. The wideband spectrogram shows

vertical striations spaced at the pitch period. The narrowband spectrogram shows

horizontal striations spaced at the fundamental frequency. They are both due to the

voiced excitation. Figure 2.12c shows a spectrogram whose window duration is 4

msec, which is intermediate between the previous two. This window size is matched

to the excitation in the following sense. The 2-D gaussian kernel (Eq. 2.6.7) that

corresponds to this spectrogram has standard deviations of 2 msec by 20 Hz. These

are in the same ratio as 10 msc and 100 Hz, the pitch period and the fundmental

frequency, respectively. This choice gives rise to rows and columns of sharp peaks

and valleys spaced at the pitch period and the fundamental frequency. We will see

in the next chapter why the excitation produces this particular structure.

Figure 2.13 shows the Wigner distribution for this utterance. Compared to Figure

2.12 it looks almost as if the vertical scale has changed, but it has not. This repre-

sentation is dominated by cross-terms that give 'echoes' of the formants in initially

suprising places. But remember that the sum of two complex exponetials at differ-

ent frequencies gave rise to a cross-term half-way between them that had greater

amplitude than the original terms (Figure 2.8). Evidently, the Wigner distribution

itself gives a confusing picture of multi-component signals such as speech.

Figure 2.14 shows the time-frequency autocorrelation function, the 2-D fourier

transform of the Wigner distribution, for this utterance in the neighborhood of

the origin. Notice the repeated pattern in rows and columns spaced at the pitch

period and the fundmental frequency. In Chapter 3 we will see that this pattern

can be exploited in understanding how to suppress the excitation.
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i~ve.

see-

Figure 2.13. Log magnitude of Wigner distribution. (This is implemented as a

pseudo- Wigner distribution using a gaussian window of standard deviation 40 rnsec

[See Claasen & Meckienbriuker 198Gb].)

Hz.

-12.5 -il .7.5 -5 *z.S I 2.1 1Sggz

rrnsec

Figure 2.14. Log magnitude of time-frequency autocorrelation function in the

vicinity oft the origin.
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I .65 8.1 a.2 6.2 6.2S 0.3 6.35 .

(b)

Figure 2.15. Gaussian transform with kernel scales chosen to suppress the excita-

tion, at = 10 msec and a,, = 100 Hz. (a) 2-D plot. (b) 3-D plot.
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Figure 2.15 shows the Gaussian transform of this signal using a kernel of a scale

chosen to suppress the excitation. The pitch striations are removed, leaviag smooth

time-frequency ridges that correspond to the formants. The ridges are quite sharp,

although it is somewhat difficult to appreciate this in the half-toned picture, Figure

2.15a. The 3-D plot in Figure 2.15b gives a different perspective on this surface.

It shows F1 and parts of F2 quite nicely, although most everything above 2 kHz is

considerably distorted in this presentation.

Finally, Figure 2.16 shows directional transforms of this utterance using oriented

Gaussian kernels matched to different aspects of the signal. In Figure 2.16a, the

kernel orientation is matched to the rising F2. In Figure 2.16b, the kernel orientation

is matched to the falling F2. These choices bring out the selected formant peak with

high resolution.

In this chapter, we have found that a particular time-frequency energy represen-

tation, the Gaussian transform, best satifies a set of properties deemed desirable.

There are several free parameters for this representation (ar, o,,, and 0'), which de-

termine the scale and directional selectivity of the transform. Deciding what scales

are of interest requires a more specific model of the signal. In the next chapter, we

adopt such a model.
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Ilse

Figure 2.16. Directional transforms using oriented C'aussian kernels matched to

different aspects of the signal. (a) Kernel orientation matched to rising F2. (b)

Kernel orientation matched to falling F2.



Chapter 3.

Time-frequency filtering

In this chapter, we continue the discussion of joint time-frequency energy represen-

tations for speech signals. Here we shall make stronger assumptions about the form

of the signals. We will introduce a particular model of the time-varying vocal tract,

and define its 'transfer function', H(t, uj). We will show that time-frequency filtering

can be used to estimate IH(t, w)12 , a technique that is essentially a two-dimensional

generalization of straight-forward, stationary methods. Further, we will see that

H(t,w)l2 is closely related to the time-frequency representations of the previous

chapter.

3.1. The stationary case

First, let us re-examine the stationary case. If we adopt a more detailed model

of the generation of a stationary speech signal, we can say much more about the

cepstral methods discussed in the previous chapter. The linear model [Fant 1960;

Flanagan 1972] of vowel production begins by decomposing the speech signal into

a vocal source component (e.g. periodic vocal fold vibration) and a vocal tract

component, which are treated as independent. The vocal tract is modelled as a

linear and quasi-time-invariant filter with excess pressure and volume velocity (of
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assumed one-e mensional wave motion) being analogous to voltage and current in

circuit theory. The distribution of the poles of the filter's system function constitutes

the formant description of the vocal tract.

In other words, H(iw), the transfer function of the stationary vocal tract, can be

approximated by [Flanagan 19721 t

N
H(iw) = 1 [znHn(iw) + zH-,,(iw)], (3.1.1)

n=1

where Hn(s) consists of a simple pole at s, = an + iwn,

1
H.(iw) = iw - (an + iwn) (3.1.2)

and z. is the residue at the nth pole,

Z 1 Sszs (3.1.3)
= 2iwn. Ik$. [(- )+ - )+ - ) + 2iVw(a - ua)3 )

We associate a formant with each pole, or more precisely, with each pair of poles,

since they occur in conjugate pairs, i.e., s-n = s , given the impulse response of

the vocal tract is real. The impulse response of the stationary vocal tract, in fact,

is N

h(t) = E [znh,.(t) + znh-n(t)], (3.1.4)

where

h )= eu(t). (3.1.)

In this linear time-invariant model, it follows that the spectrum of the excitation

and the vocal tract transfer function combine by multiplication in the power spec-

trum and addition in the log spectrum. This fact leads to a simple procedure for

t This is the parallel formulation. The serial formulation, H(iw) = k f. H,,(iw)H_,(iw) is also often
used. The former is the partial fraction expansion of the latter.
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separating the excitation and the vocal tract transfer function in certain (idealized)

cases.

Suppose the the excitation is an impulse train, which is a very 3imple model of

constant pitch, voiced excitation. In this case, the spectrum of the excitation is also

an impulse train, and thus, the speech spectrum is a uniformly sampled version of

the vocal tract transfer function. If the sampling were unaliased (i.e., the pitch is

low enough relative to the highest transfer function quefrencies) the original transfer

function can be exactly recovered by ideal low-pass filtering the spectrum, by the

sampling theorem [Bracewell 19781. But this is just cepstral smoothing using, in this

very idealized case, a rectangular cepstral window [Oppenheim 1969; Oppenheim

& Shafer 1975].

Let us examine this result more closely. The formulation here will be in terms of the

power spectrum and its transform, the autocorrelation function, instead of the more

usual log spectrum and its transform, the cepstrum, since the former generalizes

more easily to the ime-varying case. Since the term 'cepstral filtering' is, strictly

speaking, reserved for filtering operations on the log magnitude spectrum, we shall

refer to analogous operations on the power spectrum as autocorrelation filtering.

The results in the stationary case are similar in either formulation. t

If x(t) represents the excitation, h(t) the impulse response of the vocal tract, and

y(t) the output speech signal, then in terms of power spectra and transfer function,

Cepstral and autocorrelation filtering can both be used to separate signal components that arise
at different scales in the frequency domain. Cepstral filtering i most appropriate when the signal
components combine by convolution in the time domain, autocorrelation filtering when they combine
by addition. Both approaches can be used for speech, since we can use either a serial or parallel
formulation of the vocal tract model
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IY(w)12 = IH(iw)12 
IX(w)[

2 , or in terms of autocorrelation functions,
00

A 1 (r) = J A,(t)AA(r - t) dt. (3.1.6)

-00

Let the excitation be an impulse train, I(t; T) = Ek 6(t - kT). Then
27r 'o

Aj(r) = - 6(r - kT). (3.1.7)
k=-0o

Thus from Eq. 3.1.6, we have

A( TZ Ah(r - kT). (3.1.8)
k

Provided the duration of Ah(r) is small enough that the terms in Eq. 3.1.8 do

not overlap, Ah(t) and thus IH(iw)12 can be recovered by windowing Ay(r) with a

rectangular window centered on the origin and of duration T (see Figure 3.1).

Let us examine the form of Ah(r). Assume for now that the vocal tract transfer

function consists of only a single pole, i.e., its impulse response has the form of

Eq. 3.1.5. Then

= J e~C~)u~r +t) eafltt(t) d

-00

00

. 8- Jf e"'u (r + t) u (t) dt

-00
cc

e= t  f e2 a t dt

maz(-r,O)

=_' (3.1.9)

where f, = -2a, is the (half-power) bandwidth of the pole. Thus, provided this

bandwidth is large enough, the overlap in the terms in Eq. 3.1.8 will be negligible,

and windowing A,(r) will very nearly recover Ah(r) and hence IH(iw)12 . t

t The phase of the transfer furction can be found, if desired, fron, its magnitude, since this model is
minimum phase [see Oppenheim & Shafer 19751.
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Figure 3.1. Recovering the transfer function by autocorrelation filtering. (a)

Spectrum of the excitation modelled as an impulse train (10 rnsec period). (b)

Square magnitude of the transfer function, which in thiis simple example is a single

pole of 300 hz bandwidth. (c) Power spectrum, the product of '(a)' and '(b)'.

Cepstral filtering uses the log Spectrum instead. The approach here generalizes

more easily to the time-varying case. (continued...)
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Figure 3.1 (continued). Recovering the transfer function by autocorrelation

filtering. (d) Magnitude of the autocorrelation function, the (inverse) fourier trans-

form of '(c)'. Dashed lines show the rectangular window. (e) Fourier transform

of the windowed autocorrelation function, which very nearly recovers the transfer

function '(b)' in this idealized case (the effect of the slight overlap of the terms in

'(d)' is negligible).

The analysis of the multiple pole case follows from superposition. Provided the

poles are not closely spaced relative to their bandwidths, :
N

IH(iw) I' j Iz.1' rIH,(iw)I2 + IH. (iw)2], (3.1.2)

t The analysis in terms of log spectra and cepstra does not require this proviso, since convolutions in
the time domain transform (exactly) to sums in the cepstral domain. This is an advantage of the
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from Eq. 3.1.1 and Eq. 3.1.2, hence

Aht(r) =: N lz 2
e '~ C

O
S W n r

, (3.1.12)

from Eq. 3.1.9. From this equation and Eq. 3.1.8, we see that windowing the

autocorrelation function of the output speech signal can still be used to recover the

transfer function when the bandwidths are large enough that aliasing is negligible.

A few changes to this model make it more realistic. First, the spectrum of constant

voiced excitation is somewhat better modelled as an impulse train that drops off

at 12DB per octave (Flanagan 19721. This trend can be removed by spectral pre-

emphasis.

Second, the sampling is usually significantly aliased, which is a more serious prob-

lem. In this case, we can recover only a low-pass version of the transfer function. A

rectangular window is a poor choice in this case, since its transform rings for a con-

siderable duration in the frequency domain. The gaussian is a good choice, because

it has minimal bandwidth for a given window duration, as indicated in the previous

chapter. (see Figure 3.2). Typically, the standard deviation of the gaussian window

is selected about equal to the pitch period.

3.2. Non-stationary vocal tract

Let us now consider the case where the vocal tract configuration is not necessarily

static. The goal is to recover the "time-varying transfer function" of the vocal tract

from the signal and remove the excitation, as we did in the stationary case.

Unfortunately, there is no widely accepted, satisfactory definition of the transfer

function for a time-varying linear filter, although there have been many proposals
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Figure 3.2. Estimating 'aliased' transfer function. (a) Spectrum of excitation

modelled as an impulse train (10 msec period). (b) Square magnitude of the transfer

function, a single pole of 150 Hz bandwidth. This has higher 'quefrencies' than

the previous example; '(a)' undersamples it in this case. (c) Power spectrum, the

product of '(a)' and '(b)'. (continued...)
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Figure 3.2 (continued). Estimating 'aliased' transfer funrtion Iin.'

of the autocorrelation function, the (inverse) fourier transform of ' I')otti :nJt

show the gaussian window. (e) Fourier transform of the windowed autororr.at;,'rI

function, which recovers a low-pass version of the transfer function 'i h,'

Ie.g., see Lui 1971; Lcynvs 196R. Page 19.52, Saleh & ,lhotir)X5 Zd.!ii,1'

We shall avoid this difficuilty by constraining the form of the ransfer ,i ':,i "--

shall allow non-stationarity, but only in certain well-behaved IaAv

The vocal tract, of course, is not an arbitrary ti-,-varving fiter tt is , ..

by the physical properties of the articilators Jonha 1902.194I ha., TI v#,!Kat0 ' . '

physics of the non-stationary vocal tract anaJvtiraJivl and -oid i ha! vJ!e,0 , ,r- I.
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reasonable physical assumptions it is possible to generalize the notion of a formant

to the time-varying case. Essentially, he replaces the assumption of a static vocal

tract configuration by the assumption that the deformations are slow enough to

satisfy the condition of adiabatic approximation, which he indicates appears to be

generally valid from cine X-ray measurements.

We can thus define the impulse response, h(t, a), for a time-varying "resonance" of

the vocal tract to an impulse, b(t - a), at time a as:

h(t, a) = efL2 ° t(w ° ' (T))idru(t - a), (3.2.1)

where we assume the formant bandwidth /0 is fixed, and the formant center fre-

quency is w0 at t = 0. Note that Eq. 3.2.1 reduces to the usual definition of the

impulse response of a formant if the time-varying modulation frequency, --Y(t), is

zero.

In Josha's model, the bandwidth varies somewhat with rate of change of vocal tract

area, which we shall treat as negligible. Regarding these baidwidth variations, Fant

119801 believes they "...are of academic rather practical significance. Of greater

importance is probably the mere fact that a rapid transition of a formant creates a

special perceptual 'chirp' effect."

It will be convenient to examine a more general class of impulse responses than in

Eq. 3.2.1. Consider the impulse response

h(t,a) = h 0 (t - a)e'L 7(7) r, (3.2.2)

where h0 (t) is the impulse response of a linear time-invariant (LTI) system and

-y0) = 0. Eq. 3.2.1 has this form with ho(t) = e(-2,o+%wotu(t). We call this a

frequency-modulated filter. We shall study this kind of filter in the next several
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sections, since it is possible to generalize the notion of a transfer function for it

and it is possible to estimate this transfer function by generalizing the "cepstral"

methods described above. Of course, an FM filter models only a single pole; we

shall take up the multiple pole model of the complete vocal tract transfer function

in a later section.

How then can we represent the time-varying transfer function of an FM filter? An

intuitively appealing candidate is

H(t,w) = Ho[i(w - '(t))), (3.2.3)

where Ho(iw) is the transfer function of the corresponding stationary filter with

impulse response ho(t) (Eq. 3.2.2). In terms of how we might want to visualize

the tiansfer function of an FM filter, this seems attractive; it is just the stationary

transfer function shifted at each time by the local modulation frequency 1(t). For

a time-varying formant pole, H(t, w) would have the form of a stationary pole in

each frequency cross-section with center frequency wo + -y(t) and fixed bandwidth

00.

For our purposes, the most important properties that the definition of the time-

varying transfer function of a formant should satisfy are practical ones - it should

provide phonetically relevant information about the signal, and it should be com-

putable from the signal. The representation in Eq. 3 2.3 satisfies these properties

since it is a simple generalization of the stationary case, which is already understood,

and it can be estimated from the signal by methods we will describe shortly.

The transfer function of an LTI filter, however, also has some nice theoretical prop-

erties that would be desirable when generalized to the time-varying case. In partic-

ular, the transfer function Ho(iw) of an LTI filter, y(z) =To[z(t)J: (1) specifies the
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eigenvalues for the filter's eigenfunctions, i.e.,

To[ewt] = Ho(iw)eiwt; (3.2.4)

and (2) is the ratio of the spectrum of the output over the spectum of the input,

i.e.,

H x(iw) = (3.2.5)

The first property does generalize to the FM case. Consider the functions

P" (t) = ei 0f[w+.I (r)I dr. (3.2.6)

These are the eigenfunctions for an FM filter T, with impulse response defined by

Eq, 3.2.2. This follows from

00

T[(t)] I= h(t,a)p.(a)da

fo ho(t - a)ef ' ) Crf .+0 r)d da

-00

0

ei 0 y(r) dr J ho(t - a)ewada

-00
= e) f i -1(T)

= i -I (r) dr o(iw)eiwt

= Ho(iw)eP(t). (3.2.7)

Further, we see from Eq. 3.2.7 that Ho(iw) specifies the eigenvalues for the eigen-

functions pw(t). The value of Ho(iw), however, depends on the choice of the time

origin. More generally,

T[vp(t)] = H(O,w)p.(t) (3.2.8)
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is time shift-invariant, where H(t, w) is defined by Eq. 3.2.3. t

By comparison, some authors have used

ft(tw) = J h(t, a)e- i w( t - a) da (3.2.9)

as their definition of the time-varying transfer function [e.g., Zadeh 1950]. The

filter's response to a complex exponential ei at is l(t, w)ewt. However, ei~t is not, in

general, an eigenfunction of a time-varying system, consequently IH(t, w) has limited

use.

Saleh & Subotic [1985] have explored generalizing the second property (Eq. 3.2.5)

to the time-varying case. They suggest using

fi(t, w) = Fy(t, (3.2.10)

as the definition of the time-varying transfer function where F (t, w) and Fy (t, w) are

joint time-frequency representations of the input and output signals, respectively.

The difficulty with their approach is that the ratio in Eq. 3.2.10, in general, will

have different values for different inputs x(t) for a given filter, unlike the LTI case

(Eq. 3.2.5). This second property evidently does not generalize well to the time-

varying case.

3.3. Time-frequency filtering

The remainder of this chapter is used to show that time-frequency filtering can

be used to estimate the transfer function of FM filters and, more generally, o: the

t I.e., suppose 1 = t - r. Let f(iw) and Ro(iw) be the time-varying transfer function and the
corresponding LTI transfer function, respectively, in the new time co-ordinate. Then, fR(i, )
H(i+ r,w) and Ro(iw) = Hoi,(w - ,(r))] = H(r,w) = 17(0,).
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time-varying vocal tract. Time-frequency filtering consists of multiplying the time-

frequency autocorrelation function A.(r, v) (Eq. 2.5.5) of the signal x(t) with a 2-D

window 4(r, v). The 2-D inverse fourier transform of this windowed function,

4' [Z(r, v)A,(r, v), (3.3.1)

becomes the filtered time-frequency representation. The shape of the window, of

course, determines what energy is kept and what is removed in the filtered repre-

sentation [cf. Flandrin 19841.

This technique is in many ways the time-varying generalization of the "cepstral"

methods presented in Section 3.1. The time-frequency autocorrelation takes the

place of the autocorrelation function, a 2-D window the place of a 1-D window, and

a 2-D inverse fourier transform of a 1-D fourier transform in this generalization.

The representation in Eq. 3.3.1 also specifies a general member of the quadratic

transforms presented in the previous chapter, indicating that the two chapters are

related. In this chapter, our goal is to show that a member of this class can give a

good estimate of the time-varying "transfer function" of the vocal tract Happily, it

turns out that the form of time-frequency window t(r, L) that gives a good estimate

is a 2-D gaussian, which is the same as Eq. 2.6.7. In other words, we end up with

the same kind of time-frequency representation as in the previous chapter, which

was based there on weaker, but more general goals.

The results of this chapter, then, reinforce and rein.erpret those of the previous

chapter. Further, the analysis here suggests which scales to choose, decisions that

were free parameters of Chapter 2. In particular, for voiced speech, r, is mat hed

to the pitch period, and a. is matched to the fundamental frequency.
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We have just given the basic result of this chapter. It remains to demonstrate its

validity, i.e., that this kind of filtering will give a good estimate of the time-varying

vocal tract "transfer function". This requires several steps in which we gradually

generalize the form of the filter that models the vocal tract. In Section 3.4, we

re-examine the stationary case, this time in terms of the time-frequency autocorre-

lation function. In Section 3.5, we consider FM filters that have a linearly varying

modulation frequency. In Section 3.6, we use a locality argument to generalize these

results for quasi-stationary filters and for FM filters that have a smoothly varying

modulation frequency, respectively. In Section 3.7, we use a superposition argument

to treat the multiple pole case.

3.4. The stationary case - re-examined

So let us assume for now we want to estimate the transfer function of a filter that is

time-invariant. We will show how the time-frequency autocorrelation function can

be used to produce this estimate.

This will really just be recapitulation of the stationary argument presented in Sec-

tion 3.1. In fact, Ah(r,O) = Ah(r), so we see the correspondence is very close.

But with the time-frequency autocorrelation function we will be in a position to

generalize these results to the time-varying case, so it is worth the effort.

Letting x(t) represent the filter input, h(t) the filter's impulse response, and y(t)

the output, we have

00

A,(r, V) = f Az(t,v)Ah(r - t,v) dt. (3.4.1)

-00O

In other words, the time-frequency autocorrelation funttion Ay(r, v) consists of the

convolution of A,(r, v) and Ah(r,m) along the r dimension. This is analogous to
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Eq. 3.1.6.

Let the filter input be an impulse train I(t; T) = 6(t -- nT). Then

I e-"" E 6(t - nT + r/2) Z6(t - mT - r/2) at.
n wM

Substituting t' = t - (n + n)T and r' = r + (m - n)T,

- ~~ { _ "'b(t' +r'/2)b(t' -r'/2) dtl} ei(m+nt)Tv

The quantity in braces is the time-frequency autocorrelation function of an impulse

6 (t'), which is A6 (r', L,) = b(r') [see Classen & Mecklenbriuker 1980a[. Thus,

Aj(r, v) = 1 8(r + (m - n)T)e
- ' (M+n)Tr m.

n ra

Letting k=n-m,

- :1 2 6(r - kT)ei T,,einTv
n tk

- e'lT6 - kT){Ze-mT}

The quantity in braces is the fourier transform of an impulse train I(t; T), which is

itself an impulse train 7I(v; ') [see Bracewell 19781. Therefore,

At(r,v) = T e2 - kT)6( -T

k n

- 7r Z-(- 1)nk6(r - kT)6(t -- )2rn (3.4.2)
k T

Eq. 3.4.2 shows that the time-frequency autocorrelation function of an impulse

train is a rectangular grid of impulses spaced T apart along r and 27r/T apart along

v (see Figure 3.3). t Eq. 3.4.2 is the two-dimensional analog of Eq. 3.1.7.

t Siebert f19561 has derived the time-frequency autocorrelation function for a train of pulses of
arbitrary shape, a result that is important in the theory of radar. The above result follows formally
from this if the pulses are given unit area and approach sero width in the limit.



.3.4. The stationary case - re-examined 75

200

100

Hz o--

-100

-200
-1

-0.02 -0.01 0 0.01 0.02 SeC

Figure 3.3. Magnitude of the time-frequency autocorrelation function of an im-

pulse train (10 msec period).
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Figure 3.4. Magnitude of the time-frequency autoco. -relation function of the out-

put of an LTI filter excited by an impulse train. In this simple example the filter

consists of a single pole of 300 hz bandwidth.
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From Eq. 3.4.1, we have

Ay(, 7 EE -I'~hr- kT, 27rn )&V - 21r (3.4.3)T= n - T
k

the two-dimensional analog of Eq. 3.1.8. Ay(r, v) consists of a rectangular grid of

shifted r slices of Ah(r, v) (see Figure 3.4).

Provided the terms in Eq. 3.4.3 do not overlap, Ah(r, 0) can be recovered from

Ay(r, v)b(v) by windowing it with a rectangular window that is centered on the

origin and that has length T, width 27r/T, and height T/27r (see Figure 3.5). From

Ah(r,0)6 (r) we can, in turn, recover IH (i)I 2 , since

[ Ah(r, 0)6(V')1 ~- Ah (7,0) 6(V)eCi(Vt-Tw) di- di.'Co o

j Wh (t, w) dt

-C0

- IH(i )I2 . (3.4.4)

On the other hand, if the terms in Eq. 3.4.3 do overlap somewhat, then a low-pass

version of IH(iw)12 can still be recovered, since

1 2

= ¢(t,w) ** IH(iw)12
, (3.4.5)

where 0(r, v) is the time-frequency window, and 0(r, w) is its two-dimensional in-

verse fourier transform. In this case, using a rectangular window on the time-

frequency autocorrelation function is a poor choice since its transform rings for a

considerable duration away from the origin. A gaussian window minimizes this

problem.
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Figure 3.5. Rectangular window (very nearly) recovers 'unaliased' transfer func-

tion. (a) Windowed time-frequency autocorrelation function in Figure 3.4. (b)

Square magnitude of transfer function, the 2-D invez.ze fourier transform of '(a)'.

In the 'aliased' case, i.e., if the terms in Figure 3.4 were to overlap significantly, a

gaussian window would be more appropriate.
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Let us examine the form of Al(r, L,) assuming for now that the fil er consists of only

a single pole, i.e., its impulse response has the form of Eq. 3.1.5. Then
00

A(h.(r, v) = f e(t+r/2)u(t + r/2)"*.(t-r/2)U(t -- / 2 )e-"t dt

00

Ci= T f e2
a.tu(t - r /2)e - : t dt

-00

e= -#/2riW. (3.4.6)

This last equation is the two dimensional analog of Eq. 3.1.9.

Thus, provided the pole bandwidth is large enough, windowing A,(r, v) can recover

most of AA(r,v), and, hence, a low-pass ver-ion of IH(iw)J2 .

3.5. Linearly varying modulation frequency

We now consider the case where we want to estimate the transfer function of ant V %I

filter that has a linearly varying modulation frequency, i.e., i (t) = mt in Eq. 3.2.2.

This means

h(t, a) = ho(t - a)ed m(t2- 2). (3.5.1)

The previous section was the special case m = 0.

Let us find how passing a signal through such a filter modifies its time-frequency

autocorrelation function. As usual, we let x(t) represent the input to the filter and

y(t) the output. Thus,

y(t) = f z(a)h(t,a)da

= eijMt 2 f x (a) e lho(t - a) da. (3 5 v
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Letting i(t) = x(t)eliti and (t) - it)C- mi2 , we have fro-n Eq. 3.5.2 and

Eq. 3.4.1, 3C

AJ(.,) f ,4 (t,v)A ( r - t,,) d. (3,5.3)

In other words, the time-frequency autocorrelation function of (t) consists of the

convolution of the time-frequency autocorrelation of i(t) and hr(t) along the r

dimension.

We are more directly interested in 4. and .4, than .4, and Ai;. But this last

transformation in simple, since the time-frequency autocorrelation function has tl,.

following nice property: if -(tl x(t)e , then Van Trees 1971

Ai r.') - A, r~,- "17). (:1.5.411

In other wtords. muipq)jg a signa h a linear chirp shetr., its tie-freque!:c

atocorreiation function aong the 4, dimension (see Figure 3.6).

Combining Eq 3.5.3 and Eq. 3.5 4. we see that

X

A,Vr, L') J .4 (t,v- i(t - r))Ah.,(r - t, i - mr) dt. (3.5.5)

In words, the time-frequency autocorrelation function of a signal passed through the

fihter in Eq 35 1 can be found by first shearing its input time-frequency autocor-

re.aton function, convolving that with the time-frequency autocorrelation function

of k .tj, and then shearing the output time-frequency autocorrelation function in

tie opposite direction. all with respect to the t/ dimension (see Figure 3.7).

\% hen the filter input i, an impulse train I(t: T). the filter output is

, ,2 -v -. . k 1. 1 1kT)( m( -kT)------).
T mT
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4.inprulse train ( 10 msec period). In this example, the corresponding LTI til't r

, ,l.ist, of a single pole of 3X) hz bandwidth.

v1r,,n of It, ;) 2 can still be recovered, since

7r "P(r,w)A,(,i,.') 2: j'-1 (r,.,) AiAh,(,r,0)5(, - mnr)l

1 2

0f ,(t, w ) H.I v t, ) (3 .5 .8 )

where 0(r, v) is the time-frequency window, and O(t,w) is its inverse fourier trans-

form. A 2-D gaussian window is used, and its dimensions are matched to the period

T and the fundamental frequency 2tr/T, respectively (see Figure 3.10).
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Figure 3.9. Rectangular window (very nearly) recovers 'unaliased' transfer func-

tion. (a) Windowed time-frequency autocorrelation function in Figure 3.8. (b)

Square magnitude of transfer function, the 2-D inverse fourier transform of '(a)'. In

the 'aliased' case, i.e., if the terms in Figure 3.8 were to overlap, a gaussian window

would be more appropriate.



43.6. The quasi-stationary case .

So far, we have shown that the time-frequency filtering can be used to estimatelil,.

transfer function of two kinds of linear filters - time-invariant and FM filters wl

linearly varying modulation frequency. We now show that more general rases wl&:

follow from the time locality of this operation.

3.6. The quasi-stationary case

We next consider the quasi-stationary case in which the vocal tract changes sl,.,

over time. The traditional way to deal with this situation is to extend the stationary

arguments (Section 3.1) by substituting the short-time spectrum for the spect rtr

of the entire signal. There are thus two windows involved in this analysis::.,

spectrogram window, ws (t), and the autocorrelation function window. ,'.. i -

The 'two-dimensional' approach that we have outlined above extends dir,,c tl

out the need of an additional window. In fact, the estimate of It(t. "is p, ,, :;H .

representation of the signal energy

so from Eq. 2.6.5 we know that IH(to, W)1
2 effectively depends only on signal valu s

within a few at of to. t Provided the quasi-stationary signal does not change nric(h

over this interval, the stationary results of Section 3.4 generalize immediately

These two approaches for quasi-stationary signals, the former using a 1-D window.

ws(t), on the signal and a 1-D window, WA(") on the autocorrelation function, and

the latter using a single 2-D window, O(r,v) on the time-frequency autocorrela-

tion function, are related. In fact, O(r,w) = At,,(r,L)w2(r). The latter approach

specifies the time and frequency scale of interest independently with each of the

dimensions of the window 4(r, v), This is somewhat cleaner than the former, which

Provided &ran > -.
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If the spectral shaping of the first transmission channel is gradual, i.e., r(t) is of

short duration, then from Eq. 3.9.1, Wp(t,w) - JR(iw),2 Wy(t,w). If the gain varia-

tions of the second transmission channel are slow, then from Eq. 3.9.2, Wq(t,..)

z(t) 2W (t,w). It follows from these equations and Eq. 3.5.8 that

1 2,jr- j (r,L,)A,(r,v)] (, )R i 11j, )2 (3.9.3)

and

l' $(r,u)Aq(r,.')1  ,O(tW) ** z(t)y 1 H(t, 2 (3.9.4)

Thus, these simple kinds of transmission channels have simple effects of the transfer

function estimate. The broadband LTI channel essentially shapes the estimate's

frequency slices and the slowly varying gain channel shapes its time sli-,s.

3.10. The excitation

I'p to no%%, we have assumed the filter excitation has been an irimpullse traii ,

consider more general (and realistic) forms of excitation in this section.

We can create a general periodic excitation from an i.npulse train by passing it

through a LTI filter whose impulse response r(t) has the excitation's pulse shape.

The output can then be passed through the time-varying filter h(t,a). Provided

the spectral shaping by r(t) is gradual, i.e., r(t) is of short duration, then these two

filtering operations will commute. The assumption is that the time-varying filter

can be considered quasi-stationary over the duration of r(t). This is a reasonable

assumption for the gradual spectral rolloffs produced in speech excitation. Since

these two operations commute under these circumstances, the effect of the filter r(t)

on the transfer function estimate is given by Eq. 3.9.3.

Similarly, slowly varying changes in the amplitude z(t) of the excitation will result

L
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in corresponding changes in the amplitude of the filter output, with the effect on

the transfer function estimate given by Eq. 3.9.4. The pitch period need not be

constant, either. Using the locality arguments again, we only require that the pitch

period changes slowly.

Finally, consider the case where the filter is noise-excited. Martin & Flandrin

[19851 discuss using time-frequency filtering as a general approach for analyzing

non-stationary random signals. Our model here involves not only non-stationarity,

but also noise that is not additive, and a careful theoretical analysis of this case has

not been attempted yet. We must be content, for now, with the following comment.

We have seen in the previous chapter that these methods can be used to select time

and frequency scales that remove the fine structure introduced by i he ,,i , i,

This, of course, remains true for this case.



Chapter 4.

The Schematic Spectrogram

4.1. Rationale

In the previous chapters we have seen how to obtain a well-behaved representation of

the the speech energy, with a choice of the time and frequency scales of interest. For

the next step we are faced with a methodological decision. If we are willing to make

strong assumptions about the signal early on, then we can use those constraints

in some detection scheme. For example, one can assume the spee h spectrum is

composed of a number of poles, and use analysis-by-synthesis or linear predictive

coding methods to fit these poles to the spectrum in a formant analysis.

In this approach, a synthetic multiple pole spectrum is fit to each short-time spec-

trum. Typically, the pole frequencies can be varied, but for tractability the num-

ber of poles and their bandwidths are held fixed. Stevens & House [1955] and

Olive 119711, for example, computed mean-square difference between log-magnitude

short-time speech spectra and a function of the form:N
Ig N ( ( -) + k, Sr, =a + i,. (4.1.1)

The poles of the synthetic spectrum that is found to have the least RMS error
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are taken to be the formants. The permissible range for each of the poles is often

restricted to the typical ranges for the corresponding formants in this method.

Different versions of this method are identified by the search strategy used to find

the best match. Some have used exhaustive search [Stevens & House 1955; Bell,

et al 1961; Matthews, et al 1961[, so-called analysis-by-synthesis. Olive[1971J used

hill-climbing techniques. Linear-predictive coding can be viewed as fitting a fixed

number of poles to short-time spectra, using a slightly different spectral distance

measure than RMS distance [Atal 1971; Markel & Gray 1976[. The great advantage

of LPC is that it provides a simple closed-form solution to the search for an optimum

fit.

One problem with this approach, as stated, is that it depends on the quasi-stationary

assumption. The short-time spectral contribution of a formant in rapid motion is

poorly modelled as a pole with a bandwidth appropriate for a stationary formant.

Even when the bandwidths are variable, as in the LPC technique, the diffuse spec-

tral contribution of the moving formant can cause incorrect formant matches. In

principle, these methods can be generalized to the time-varying case. Liporace

[19751, in fact, has done so for the LPC technique.

This approach, however, suffers from a more general problem. The model used to

generate the synthetic spectra has little notion of the source or transmission channel

characteristic, or of nasalization. These effects can contribute significantly to the

speech spectrum, "competing" for poles that were meant to be fit to the formants,

and thus often. resulting in pole distributions that have poor correspondence to the

formant distribution. The degree of the fit to a particular point in the spectrum

depends on the entire pole distribution; i.e., on the namber of poles used and where

each pole is positioned in the spectrum. Thus, errors in one part of the spectrum
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are propagated to other parts in the very first stage n tir .

Fo," example, Figure 4.1 shows pole locations found to I P, t: i

autocorrelation method. The order of the analysis "as

to allow for two complex poles per 10(X) Hz plus 4 po,. r ::.'..

spectral balance (e.g., 12 pole analysis for 4KHz 5,t're, ,:,..
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of finding its physical correlates

Applying these guidelines to speech suggests taking the energy reprensta*, o

in Figure 2.15, and producing rich, symbolic descriptions of the signiticant' ,eat, ;'r,
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there. There are several features (at various scales) that suggest themselves: time

discontinuites (up and down edges) useful for finding onsets, offsets and bursts;

time-frequency ridges, easily seen in Figure 2.15, useful for finding the formants

and perhaps channel resonances; and some form of gross spectral balance mea-

sure, also useful for formant and channel analysis. We call this composite symbolic

representation the schematic spectrogram.

4.2. Spectral Peaks

To create this representation, we must come up with computations that identify

these features. This is not as easy as it may seem, since the features clearly visible

in Figure 2.15 may nevertheless require some non-trivial computations to detect

reliably. We focus on how to find the time-frequency ridges, due primarily to the

formants, in the next sections.

An obvious way to try to find these ridges is to identify peaks in vertical slices of the

time-frequency energy surfaces. This approach has been tried by several authors,

with the main difference between the various instances being how the smoothing

was accomplished. Flanagan [1956] used a filter bank whose output was low-pass

filtered, Schafer&Rabiner used cepstral smoothing [Oppenheim 1969; Oppenheim

& Shafer 1975], while McCandless [1974] used LPC-based smoothing [Atal 1971;

Markel & Gray 19761.

To examine this technique, we will use the smoothed time-frequency surfaces of

Chapters 2 and 3. Since these surfaces are smooth, the spectral peaks can be

found by looking for maxima, i.e., (negative) zero-crossings in 3r8F(t,w). Figure

4.2 show these points for the time-frequency energy surface in Figure 2.15. While

the horizontal ridge due to F1 is well captured, the steeply rising F2 is very poorly
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Figure 4.2. Peaks in spectral cross-sections of the time-frequency energy surface

in Figure 2.15. The energy ridge due to F2 is poorly captured by this peak compu-

tation.

captured. This may seem suprising at first, but the reason is simple.

Eq. 3.5.8 models the situation with F2. The formant pole P(w - mt) with time-

frequency slope m is smoothed by the 2-D gaussian O(t,w) to give F(t,w). This

will produce a time-frequency ridge in F(t, w) that has a roughly constant width,

independent of slope m, when measured perpendicular to the formant trajectory in

the time-frequency plane. However, the width of the ridge in a vertical slice increases

with increasing slope; evidently in Figure 2.15, F2 was sufficiently broadened that its

spectral peak was completely lost to other effects in the signal, i.e., other formants,

noise, the source and transmission channel characteristic (cf. Figure 2.4).
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This effect is not an idiosyncrasy of our particular choice of time-frequency energy

representation. It is true, for example, of any representation computed with signal

windows (e.g., any positive representation, by Thin. A), since if the formant moves

enough in frequency over the duration of the window, its spectral representation

will be significantly broadened.

One could rethink the design choices for the time-frequency energy representation,

trying for better spectral resolution at the expense of our chosen criteria. How-

ever, the problem is not there, as a re-examination of Figure 2.15 will show. The

F2 ridge is clearly visible in this representation, it looks no more broadened than

the stationary Fl. This is because we see both dimensions of time and frequency

simultaneously, and as the formant ridge broadens in frequency with increasing

slope it narrows in time. Its prominence depends on its width perpendicular to its

trajectory, which does not change much with slope.

Why then did we confine our peak detection methods to vertical slices? It was the

usual quasi-stationary prejudice of thinking of speech analysis in terms of a family

of one-dimensional spectral analyses parameterized by time. Just like the energy

representation problem, this problem is inherently two-dimensional and should be

treated as such.

4.3. Time-frequency ridges - non-directional kernel

The approach we will use for detecting time-frequency ridges will depend on whether

we use an directional or a non-directional kernel for the underlying energy repre-

sentation. If we use a non-directional kernel, the problem is simpler, so we shall

address this first. In this case, we begin with a single time-frequency representation

at a given time and frequency scale, as in Figure 2.15, and the problem reduces to
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finding the ridges in this smooth, two-dimenional surface.

How can we find ridges in a smooth, two-dimensional surface? This becomes a

problem in differential geometry. As such, let us look at the gradient and curvature

vectors of the surface in the neighborhood of a ridge. Figure 4.3 shows them for the

time-frequency surface in Figure 2.15 in the neighborhood of the initial steep F2.

In particular, the solid vectors are used to depict the direction of the gradient, VF,

i.e., the local direction of steepest ascent. The dotted vectors depict the direction

of greatest downward curvature, gdc F, i.e., the local direction in which the surface

curves the most downward from the tangent plane.

A precise definition of gdc F is in order. We will use the second derivative as the

measure of curvature - this is sometimes called unnormalized curvature. This is

used instead of normalized curvature (which has the form B/11 + (')2] in one

dimension) for two reasons. First, it is simpler. Second, unnormalized curvature

scales linearly with a change in the amplitude scaling, normalized curvature does

not. If we use the former, our ridge computation proves invariant under changes in

the amplitude scaling.

Given this, we define gdc F as the direction vector of the minimum second direc-

tional derivative at a given point. More formally, let

(02
F aF2

H(t,f) - F 82F 4..1

denote the Hessian matrix for F(t,f). Let t denote the eigenvector of H corre-

sponding to the lesser eigenvector ic. Then gdc F =

Let us now return to Figure 4.3. As one might expect, the gradient points toward the

top the the ridge on each side of it, but must swing through it as one passes over the
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Figure 4.3. Gradient and curvature vectors in the vicinity of the rising F2 in Figure

2.15. The solid vectors depict the gradient direction, and the dotted vectors depict

the direction of greatest downward curvature. (The vector lengths are normalized

to unity.)

top. The direction of greatest downward curvature, however, points perpendicular

to the ridge in its entire neighborhood, since a surface will curve downward more

sharply as one moves toward and away from the top rf a ridge then if one moves

along it. Note that the two kinds of vectors will become perpendicular precisely on

the top of the ridge.
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We define the ridge top as the locus of points that satisfy

VF.gdcF=-O and r <O, (4.3.2)

where x is the minimum second directional derivative. The inner product of these

vectors is zero precisely when they are perpendicular, and r. < 0 insures that the

point is a ridge top and not a trough bottom.

We now show this definition is equivalent to moving along lines of curvature on

F(t, f) corresponding to the greatest downward curvature and noting passage through

a peak on that surface. This gives an intuitively simple interpretation of a ridge

top, and shows that gdc F essentially provides the local ridge direction.

Let g : 9Z _ !R
2 be a parameterized, differentiable curve with g'(s) = gdc F(g(s)). In

other words, g traces out a curve in the time-frequency plane that is always tangent

to the direction of maximum downward curvature. When F o g goes through a

peak, JF[g(s)] = 0. By the chain rule, this occurs precisely where VF. g'(s)

VF • gdc F = 0. If ic < 0, the curve goes through a maximum. t But this is just

our ridge top definition, Eq. 4.3.2, as desired.

The inner product in Eq. 4.3.2 is easy to compute for each point on these time-

frequency surfaces (one only needs the first and second derivatives of the sur-

face, which are simple to compute for such a smooth sur.Cace). Since this quan-

tity may vanish in between sample points in a digital implementation, we detect

zero-crossings between adjacent sample points.

Figure 4.4 shows the zero crossings in this quantity for the time-frequency energy

surface in Figure 2.15. Note that the steep formant peaks are now as well traced

This assumes Ig"(s)] is negigible; (F o g)"(s) = gl(s) -Hg'(s) + VF. g"(s), where r. equals the first
term.
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Figure 4.4. Two-dimensional ridge computation applied to the time-frequency

energy surface in Figure 2.15. The contours are those points where the gradient

direction and direction of greatest downward curvature are perpendicular. This

computation captures the steep time-frequency ridges, due to rapid formant motion,

as well as the more horizontal ones.

as the stationary ones by this ridge top computation. The only thresholding per-

formed here is the removal of points below the signal-to-noise ratio of the analysis.

Thus, fairly low amplitude structure can appear in addition to the significant time-

frequency ridges. We will examine in Section 4.6 ho% we to deal with such clutter.

A few pertinent details have not yet been mentioned. First, to perform this compu-

tation, an aspect ratio has to be chosen between time and frequency, since it is not

invariant under different relative scalings of time and frequency. The choice is nat-
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ural; we use the scaling inherited from the energy representation: let f = (at/a )w.

Thus, we perform our computations in the new co-ordinates, (t, f).

Second, very high spatial frequencies have been removed from the energy represen-

tation already. Very low spatial frequencies also appear in the vertical direction,

due to amplitude variations and formant motion. We find better results when these

are also removed by filtering; we thus use a smoothed and flattened energy surface

for the ridge computation.

4.4. Time-frequency ridges - directional kernel

A second approach to the problem of identifying time-frequency energy ridges uses

directional kernels. Let F(t, f; 0) be a family of time-frequency representations of

the class defined by the kernel in Eq. 2.8.8, where 0 gives the preferred direction of

the transform (i.e., the kernel orientation), and the other free parameters, al and

U2, are fixed. We would expect in the vicinity of a time-frequency ridge and for fixed

t and f, F(t, f; 0) would be maximum when 0 equalled the local ridge direction 00;

in other words, when the transform's orientation is tuned to the local direction of

the energy ridge. We would also expect that Fit(s), f(s), Oo) would be maximum

at the ridge top, where (t(s), f(s)) is a curve that crosses the ridge perpendicular

to its trajectory. The first case corresponds to a maximum under rotation of the

kernel; the second case corresponds to a maximum under translation of the kernel

along the minor axis of its concentration ellipse (see Figure 4.5).

The locus of points where these two maxima coincide defines a curve in the time-

frequency plane, which we can take as our ridge top definition. That is, we seek the

points that satisfy both

a-F(t, f; 0) = (4.4.1a)800



-4.4. Time-frequency ridges - directional kernel 102

B

f
r

q A
U
e
n cnergy concentradion
C

y A

time

Figure 4.5. Two conditions for ridge detection: (a) local maximum under kernel

rotation, and (b) local maximum under kernel translation along minor axis.

and

a-F(t,f; ) = VF. (sinO, -cos 0)

= at sin 0 - F Co 0

= 0. (4.4. 1b)OFOF OF O

This computation can be implemented by calculating Tr, 8 and W- on a suf-

ficiently fine grid of samples of (t,f,O), and then finding the simultaneous zero-

crossings in the lefthand sides of Eq. 4.4.1a and 'Pq. 4.4.1b. (The signs of the

zero-crossings have to be examined to insure that we have maxima and not min-
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ima.)

We yet have to specify the scale parameters at and a2. Alternatively, we can

specify a2 and r = ,/or2. We can interpret a2 as the size parameter and r as an

eccentricity parameter, since the greater the value of r, the greater the eccentricity

of the concentration ellipse for the kernel (when holding 0 2 constant).

The choice of r depends on a tradeoff. Clearly, as r increases, time-frequency locality

is sacrificed. In particular, bends in the time-frequency trajectory of an energy ridge

are poorly resolved with larger values of r.

On the other hand, larger values of r have an advantage in separating intersecting

energy ridges, since the larger values of r give better selectivity to a particular

orientation. We can quantify this selectivity as follows.

Consider the response of the transform at a frequency fto to a complex exponential

of frequency fo. The value is independent of fo and equals the value of F(0, 0; 9, r)

when z(t) = 1 (i.e., fo = 0). We can therefore define a tuning curve r(0, r) =

F (0, 0; 0, r) that indicates the selectivity of the transform kernel to different values

of the orientation and eccentricity parameters.

It is straight-forward to show that
1

r(e, r) ( )sin2 "  (4.4.4)

In Figure 4.6 this tuning curve is plotted as a function of 0 for several values of r.

Even greater orientation selectivity can be obtained if we modify this ridge top

computation. The idea is simple; instead of maximizing the energy, F(t, f; 0), for

various 0 in Eq. 4.4.1a, we can maximize a more directionally selective measure, such
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Figure 4.6. Tuning curves showing directional selectivity of gaussian transform

kernels.

as amount of curvature. In particular, we minimize the second directional deriva-

tive perpendicular to the kernel orientation. But this is equivalent to maximizing

the energy of the transform that uses the modified kernel (t, fP -2 0~(t, f);

in other words we use a modified Gaussian kernel in the computation specified by

Eqs. 4.4.la,b. This new kernel has a central 'excitatory' region with 'inhibitory'

flanks that give gre~ater orientation selectivity See Figure 4.7.

The tuning curve for this modified kernel has the form

f'(#,r) OCCOS 2aIr3(#, r). (4.4.5)
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Figure 4.7. Transform kernel f(t,f) = - - f), where 0(t, f) is a 2-D gaussian.

This new kernel has a central 'excitatory' region with 'inhibitory' flanks that give

greater orientation selectivity.

In Figure 4.8 this tuning curve is plotted as a function of 0 for several values of r.

These indeed show greater selectivity than the corresponding plots in Figure 4.6.

It turns out that this computation is a generalization of the method in Section 4.3.

In particular, if r = 1, then the two computations are identical; i.e., those points at

which the maximum downward curvature is perpendicular to the gradient direction

are identical to those points where the minimum second derivative is parallel to a

direction of zero slope.

We therefore see that this section is a generalization of previous section. When

r = 1, optimal localization in time-Frequency results. As r is increased, some of this

locality is sacrificed for improved orientation selectivity. Thus, a non-directional

kernel will give better results when there is only one ridge in the region, while an
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r) gives better performance in regions where two formants 'cross' (see Kuhn 11975]

for a discussion on the 'crossing' of formants in natural speech.).

4.5. Signal detection and ridge identification

The preceding sections have been based on heuristic arguments. Can ridge identi-

ficaton be formulated as a problem in optimal signal detection? We examine this

question in this section. Let us begin by making some particularly simple assump-

tions for ease of argument. We assume that the received 2-D signal representation

F(t,w) consists of a 2-D deterministic function S(t,w;-y(t)), which depends on the

unknown continuous function -y(t), plus additive white 2-D Gaussian noise. The

problem is to estimate -f(t), which models the path of an energy concentration in

time-frequency. We further simplify the problem by assuming that S(t, w), which

models the energy ridge, has the form

S(t, w; -y(t)) = G(t, w) ** 1 + [y,'(t)32 6(w - (t)). (4.5.1)

In other words, it is a 2-D smoothed (i.e., broadened) curve (the square root factor

normalizes the impulse for a unit step in arc length).

In a straight-forward 2-D generalization of the derivation of a matched filter [see

Van Trees 1968], the maximum log likelilood estimate of 1(t) is proportional to

A["y(t)] = 2/ f F(t,w)S(t,w; -y(t)) dtdw - f f [S(t,w;-(t))]" dtdw. (4.5.2)

Substituting Eq. 4.5.1 into Eq. 4.5.2 and changing the order of integration gives

A[y(t)] = 2/ l +[y'(t) 2'F(t, y(t)) dt - f [S(t, Y(t))j 2 dt dw, (4.5.3)

where P = F ** G. The first term is essentially a 2-P matched filter in which

the convolution F** G is matched to the signal shape. The second term takes



44.5. Signal detection and ridgre identification 108

. . . . .... .... ... . . ... 2...

(a)

See- . ...

1 0.65 6.1 @.As 6.2 6.25 6.3 6.35 O.A

. ............

2566..........

(b) tool-

66 . .... ..... ..........

0:1 S I A61 62 0.25 6.3 635 S.

Figure 4.9. Ridge top analysis of /wioi/ using the diroctional kernel of Figure 4.7.

(a) r = 2. (b) r = 3. The more directional kernels give better performance where

ridges intersect, but worse peformance at sharp bends.
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into account the energy of the deterministic signal. The path -1(t) that maximizes

Eq. 4.5.3 is the maximum likelihood estimate.

Solving Eq. 4.5.3 for the best path is difficult. In particular, the second term is hard

to evaluate (although it is proportional to the arc length of -1(t) when it is sufficiently

smooth). However, an analysis-by-synthesis procedure could, in principle, be used

to compute it numerically. Since we have assumed -y(t) is continuous, this becomes

a global optimization over t and w. This is rather like one pole analysis-by-synthesis

with a continuity condition imposed on the pole trajectory.

There is a fundamental problem with this approach, similar to the problem with

pole-fitting approach discussed in Section 4.1. Because of the non-locality of the

optimization, errors at one point can propagate throughout the solution path at this

very first stage of the analysis. If the signal were well modelled by Eq. 4.5.3 and the

noise well modelled by additive, white Gaussian noise, then this would nevertheless

be the best we could do. Realistically, this is not the case. In particular, the "noise"

could include a second ridge; one that we shouldn't treat as noise, but as something

to detect also. The detection scheme, as formulated, is too global. Instead, we need

to make it more local in the time-frequency plane.

Consider a small element As of arc length of the curve -y(t), which we can rotate

and translate in thet - w plane. If we hold its position constant, then for sufficiently

small As, Eq. 4.5.3 will be maximized for that element if it is oriented perpendicular

to the direction of greatest downward curvature. If the element's orientation is held

constant, Eq. 4.5.3 will be maximized for that element if one translates it in the

direction of the gradient. Together these imply that elements aligned on the ridge

tops defined by Eq. 4.3.2 will locally maximize Eq. 4.5.3, in the sense that further
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maximization requires moving along the ridge. These considerations show that

the ridge operator of Section 4.3 provides a kind of local solution to the detection

problem formulated here.

4.6. Continuity and grouping

We have seen that the ridge detection methods of the previous sections produce

piecewise continuous contours. This follows formally from the Implicit Function

Theorem; in particular, the zeroes of a continuously differentiable function f : 2

2 must form continuous contours in V. This continuity is a desirable property

of the description since it reflects a constraint on the underlying acoustic events

that is nearly always valid - loosely, that their spectral content varies (piecewise)

continuously as a function of time. For example, formant motion is so constrained.

We explore several ramifications of continuity in this section.

First, continuity helps to solve a practical problem in descriptions of this kind. The

ridge description, as it stands, can be cluttered with low amplitude peaks unrelated

to significant phonetic events. If we try to discard this unwanted structure by setting

a threshold, we would have to keep it fairly low, otherwise we could throw out the

baby with the bath water, breaking important contours into fragments. Continuity

lets us use thresholding with hysteresis, which is often used in such cases [cf. Canny

19831. The idea is to set two thresholds. Points below the lower threshold are first

discarded. Points that are above the higher threshold are retained, as are any points

between the two thresholds, provided they lie on a contour that crosses the higher

threshold. The result is that insignificant points are discarded without fragmenting

more important contours. The technique can be quite effective; Figure 4.10 shows

an example.
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One may argue that any kind of thresholding is a mistake, since unrecoverable errors

can be made. Instead, one should simply carry along the relative amplitudes and

strengths of the various points in the descriptions, and subsequent processing can

take these weights into account. This is, in principle, safer, but pratically it is much

harder to think about processing a cluttered, weighted description than one that

has been first cleaned up. So that the problem does not become too unwieldy at

this stage, it is best for now to proceed with a cleaned up description.

Continuity plays an important role in another problem - labelling. Our goal is

to eventually be able to label the points in the description with their acoustic

correlates, e.g., formant identification. This problem would be greatly simplified

if a whole contour could receive a single label. For example, suppose points along

the two contours in Figure 4.11 are competing for labelling as F2. If the points are

sampled every 5 msec, then the points in a 50 msec stretch can be labelled in 210

different ways. If each of the contours, however, is known to have a single acoustic

correlate, then there are only two possible labelings.

This is a simple point, but it is almost universally overlooked. The usual approach

has been to label individual points in a spectrum, and then either ignore continuity

altogether, or use it to narrow the range of candidate labellings after the fact. The

latter approach leads to a combinatorial explosion of possible labellings. Algorithms

such as dynamic programming can be used to make this approach more manageable,

but then the effect of even a single error can be catastrophic. A more direct approach

is to first identify stretches of contour that will receive a unique label, with each

deemed to have a single acoustic correlate.

How can we identify such "atomic" contours? Ideally, our initial analysis would only
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12

F2 12 72 P2 F2

(a) (b)

Figure 4.11. Two contours competing for labelling as F2. (a) One of 210 possible

labellings of 50 msec stretch when a new label can be assigned every 5 msec. (b)

One of two labellings when whole contours receive a single label.

return such contours. Acoustic events would never be merged into a single contour,

but would always be resolved as separate. I do not believe such a "perfect" analysis

is possible. It is evidently possible to fool our auditory system on this account.

Consider the spectrum of an /i/ in Figure 4.12a. By low pass filtering, the spectrum

can be tilted to appear as in Figure 4.12b. This will be perceived as an ;u ' the FI

of the /i/ is taken as both Fl and F2. Conversely, an /u/can be high-pass filtered

to sound like an /i/, with FI+F2 being taken as F1.

Listeners seldom make these kind of mistakes with r)re natural utterances altered

by this kind of filtering. This is because they hear them in context, with continuity

being an important contextual cue. For example, consider Figure 4.13, which shows

the spectrogram of /wi/. The /i/ in Figure 4.12 w -.s taken from this utterance. If

the entire /wi/ is low-pass filtered in the manner of Figure 4.12, it is perceived as
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Figure 4.12. Turning an /i/ into an /u/. (a) Short-time spectrum of an /1/.

(b) Low-pass filtered /i/. This will be perceived as an /u/. In other words, F1 is

perceived as FI+F2.

/wi/, and not as /wu/. Similarly, a high-pass filtered /yu/ will not sound like it

ends in /i/.

There are two points to be learned from these examples. The first is that it is prob-

ably not possible to always separate distinct acoustic correlates of nearby energy

concentrations locally, i.e., they can be merged if heard in isolation. The second

point is that more global constraints, such as continuity, can resolve these mergers.
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Figure 4.13. Spectrogram of /wi/. When this utterance is low-pass filtered as

in Figure 4.12, it is still perceived as /wi/. Continuity of the formants allows the

correct perception.

The ridge description will represent sufficiently close formants with a single ridge, as

in Figure 4.14. When the formants merge, one of the contours terminates, and the

other continues on. When the formants split, a new contour appears, while the old

contour continues on. Evidently, some contours can change their label along their

length. For example, the contour in Figure 4.14 that bcgins as FI+F2 becomes

splits into F1 and F2. Obviously, we can not label whole contours with a single

label always.

We, can, however, label portions of contours between splits and mergers with a

single label. Said differently, if we identify the locations of splits and mergers,
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Figure 4.14. Merged formants. (a) Widtoand spectrogram of utterance "why

am". (b) Ridge tops. When F1 and F2 approximate, their ridges merge.

we can break the contours into a set of "atomic" contours, in the sense that each

contcur will receive a single labelling. Since merge-s are sparsely distributed in

time-frequency, we will still have a small, manageable set of contours.
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The idea, then, is to augment our representation to include the locations of splits,

mergers, and crossings of contours. Identifying these junctions will serve two pur-

poses. First, contour segments away from them can receive single labels along their

length. Second, the junction itself can embody continuity constraints, since the

junctions must be consistently labelled. For example, if two contours enter a junc-

tion and one leaves it, we may label the exiting contour with the union of the labels

of the entering contours.

This is somewhat reminiscent of the junction labelling problem in the blocks world.

Perhaps an efficient algorithm to propagate these constraints can be found for for-

mant labelling as Waltz [19751 found for the blocks world. The problem here is

greatly complicated by the fact that there can be many kinds of errors, e.g., a for-

mant can be "missing". Further, other factors such as spectral balance must be

taken into account. We will not attempt any labelling here. Instead, we provide a

description of the signal that is a reasonable step toward that goal.

Provided the ridge description is not too cluttered, which is the rule once low

amplitude contours have been removed, the identification of contour junctions is

relatively easy. In fact, using the proximity of contour endpoints to other contours

is a simple method. Two nearby endpoints define a two point junction. Three

nearby endpoints or a single endpoint near the body of another contour define a

three point junction and so on. Figure 4.15a shows junctions identified by such

proximity rules. Contours that both enter and leave a junction are broken there,

while two point junctions can be bridged provided that simple "good continuation"

rules are satisfied. The result is a set of contours that are likely to have unique

labels of their acoustic correlates along their length. f igure 4.15b shows points

where contours are broken based on these junctions.
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Figure 4.15. Contour junctions located. (a) Ridge tops of/wioi/ with junctions

identified by simple proximity rules. (b) Dots show points where contours are broken

based on these junctions.
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4.7. A perspective

We have shown that the above analysis in some circumstances can produce a more

reasonable schematization of the speech signal than, for example, LPC analysis. We

will give many more examples of this analysis in the next chapter. Does this mean

that the ridge analysis is uniformly better than LPC analysis in speech applications?

The answer is no. The simplicity and speed of the LPC algorithms make them

attractive for many applications. Further, such pole-fitting models do work well

in many cases. Since they embody additional constraints compared to the raw

ridge analysis, they will usually not make the 'mistake' of merging nearby formants

together. Further, insignificant peaks usually do not affect the pole placements.

This means that in clean, unnasalized, quasi-stationary male speech LPC analysis

can be quite good. In such cases, the ridge analysis may nevertheless merge nearby
formants together and may include additional ridges, making that analysis appear

inferior to the LPC analysis.

This probably means that the ridge analysis will offer no improvement in simpe

speech engineering applications to the widespread LPC methods. Frankly, the power
and importance of the ideas presented here comes only when one asks the question:

What methods will be appropriate for speech analysis in general, natural settings?

Under such circumstances, the transmission channel will often be imperfect and

varying (e.g., walking down a hallway with open doors), there can be environmental

sounds and nasalization present, and there can be significant non-stationarity. In

these cases, the very constraints (i.e., all-pole, quasi-stationary model with a fixed

number of poles) that make the LPC technique work so well for 'clean' speech can
cause it to fail in these new circumstances, producing bizarre pole positionings. On

the other hand, the ridge analysis, a more conservative technique that makes no such

assumptions, will still produce a reasonable schematization of the time-frequency
surface. A simple demonstration of these ideas is given in Section 5.6 below. The

key idea is that strong commitments to the origin of the signal are not made at the
level of the schematic spectrogram. It is only after the ridge tops, and undoubtedly

other features such as time-frequency edges, temporal discontinuities, and spectral

balance information have been made explicit will articulatory constraints and such

be brought to bear in this more general, least comittment approach.



Chapter 5.

A Catalog of Examples

In this chapter we will apply the methods of the previous chapters to a variety of

examples. This will help us evaluate the strong points as well as the shortcomings

of the ideas presented. The ultimate test can come only when these ideas are

applied in a recognition scheme. This, however, has not been realized because of

the many different components that need to be added, as indicated earlier. At this

point, evaluation must be based on any intuitive appeal of the ideas, and on the

performance on various examples. Given that the goal is to essentially 'schematize'

the information seen in (the sonorant regions of) a spectrogram, an obvious test

is to see how reasonable the computed description looks when compared to the

spectrogram. Given that previous approaches perform poorly in specific contexts

(see Figure 4.1), clear improvements will be apparent.

This situation is similar to edge detection in image analysis. The typical way to

evaluate an edge finder is to look at its output compared to the image and ask how

good it looks. Perhaps a better test would be to as& how useful an edge finder

output is, say, when applied to some scheme for finding surface discontinuities or

stereo depth. But such a test requires confidence in the validity of the subsequent

processing, since a bad application of a good idea can perform more poorly than a
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good application of a bad idea.

In Section 5.1, we will look at some general example sentences. In the following

sections, we examine several traditional problem categories in speech analysis: in

Section 5.2, we look at semivowels and glides; Section 5.3 nasalized vowels; in

Section 5.4, consonant-vowel transitions; in Section 5.5 female speech. In Section

5.6, we look at some examples of the effects of different transmission channels on

the analysis.

5.1 Some general examples

The first four figures of this chapter show the sentences, "May we all learn a yellow

lion roar.", "Are we winning yet?", "We were away a year ago.", and "Why am

I eager?" spoken by adult males. These sentences were chosen because of their

high proportion of sonorant regions and their variety of formant motion. We show

wideband spectrograms and the 'ridge' analysis of the previous chapter for each

of these utterances. First notice the generally good agreement between the time-

frequency ridges seen in the spectrograms and those computed by the ridge analysis;

the latter description is a reasonable partial 'sketch' of the former. This is true even

in the steeper formant regions, such as the various /w/'s and /j/'s in these examples

and at the velar pinch in Figure 5.4 at .75 seconds.

It is important to emphasize that these are not formant tracks, but ridge locations

in the time-frequency surface. For example, when two forants come close enough

to merge, as in the /wi/ in Figure 5.1 (between .2 and .3 seconds and about 2100

Hz) or a portion of the /r/ in Figure 5.4 (between .85 and .9 seconds and 2000 Hz),

only a single ridge is found. (The analysis notes by lolid dots the locations that.

contours should be broken because of possible mergers (cf. Figure 4.15), which can
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aid in subsequent labelling of the contours.)

There are also ridges present that are not due to the oral formants. For example, the

ridge in Figure 5.4 between .15 sec and .55 sec and at about 200 Hz is attributed to

nasalization from the /m/. Viewed as a formant tracker this is a faiiure, but viewed

as a ridge detector, this is a success. The nasal resonance is strongly present in the

signal in this region and is correctly identified by the analysis. It is properly left

to subsequent processing to sort out which ridges are due to formants and which

are due to other sources. This is quite different from the LPC analysis, where the

presence of nasalization often causes sporadic and bizarre placement of the pole

locations (Figure 4.1). In that case, subsequent processing would have difficulty

sorting out the situation.

Finally, there are various missing formants. This particularly true for F3 when F2

is quite low as in the /w/ in Figure 5.1. In these circumstances, F3 is driven down

by the tail of F2, and is not really visible in the spectrograms either. We know

where F3 is by context, but its time-frequency ridge has essentially been driven into

the noise.
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5.2. Semi-vowels and glides

In this section we show examples of /w/'s, /j/'s, /r/'s and /1/"s. The /wi's and

lj/'s are syllable initial in the context of /wi/ and /ju/ in Figure 5.5 and Figure

5.6, respectively. A range of speech rates from slow to rapid is shown that gives a

range of F2 formant slopes from gradual to steep. Note the ridge analysis is fairly

insensitive to this parameter.

The /I/'s in Figure 5.7 are syllable initial, with one example for each of the cariinal

vowels, /i/, /ae/, /a/, and /u/. The /r/'s in Figure 5.8 are in the context V r V.

where V ranges over /i/, /ae/, /a//, and /u/. These too show some rar ' orman:

motion that is well captured.

5.3. Nasalized vowels

Figure 5.9 shows syllable initial nasalized vowels in the context V ri . The vowt

range over /1/, /ae/, /a/, and /u/. The main feature of this analysis is that addi-

tional ridges are introduced due to the nasal 'formants'. As mentioned earlier, this

contrasts with the pole-fitting methods, which produce erratic results in nasalized

vowels (Figure 4.1).
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Figure 5.8. /r/'s in various vowel contexts. (cont'd...)
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5.4. Consonant-vowel transitions

In this section we show examples of consonant-vowel transitions. Figure 5.10

through Figure 5.12 show syllable initial consontant-vowel transitions. The con-

sonants range over the voiced stops /b/, /d/, and /g/ and the vowels range over

/i/,/ae/, /a/, and /u/. The analysis is shown only after the consonantal burst since

the ridge analysis is inappropriate and peculiar in the burst region, The bursts were

located by hand in these examples. Figure 5.13 shows more rapid formant motion

with the examples /bi/ in the context /tubi/ and /dw/ in the context /tidw/.

The ridge analysis brings out formant motions consistent with the locus theory of

consonant perception. This theory states that one of the cues to the perception

of consonants is the trajectories of the formants at the transitions Liberman, et

al 1954]. For example, in many vowel contexts for adult males, F2 will have a

trajectory out the consonant that has a locus near about 1200 Hz for labials (e.g.,

/b/), about 1800 Hz for alveolars (e.g., /d/), and above 2000 Hz for velars (e.g.,

/g/). This cue is used in spectrogram reading, but has been hard to exploit in

automatic speech analysis, because of unreliable formant detection at the often

highly non-stationary consonant-vowel transitions.

The analysis here is better behaved, capturing rapid formant ridges as well as

shallow ones at the transitions. As noted earlier, however, when the formants

approximate a single ridge is produced. The F3 ridge is also sometimes lost near

the transition for this speaker; in these cases, F3 appears somewhat diffuse and

hard to locate in the spectrograms also. These issues, as well as how to locate the

burst, will present difficulties for automatic consonant detection.
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5.5. Female speech

Higher pitched speech, such as female and children's speech, present the problem

that the harmonics of the (voiced) excitation are fairly widely spaced, viz. a few hun-

dred Hertz or more. This means that in a quasi-stationary analysis, the spectrum is

less frequently sampled than for lower pitched speech, resulting in poorer estimates

of the vocal tract transfer function (cf. Figure 3.2). Viewed two-dimensionally, the

situation is more symmetric. For example, as the frequency of an impulse train

is increased, the frequency spacing of the impulses in its time-frequency autocor-

relation function (Figure 3.3) will increase, but their time spacing will decrease.

Thus one will have poorer frequency 'sampling' of a time-varying transfer function

excited by this impulse train, but better time 'sampling'.

The analysis presented in Chapter 3 exploits this fact by matching the time-frequency

window to the pitch. Higher pitched speech requires a window at a larger frequency

scale but at a lower time scale than lower pitched speech. The remaining analysis

proceeds as before. Figure 5.14 gives an example with rapid F2 motion. Figure

5.14a shows a wideband spectrogram of the nonsense utterance /uiuiui/ from an

adult female, Figure 5.14b shows the ridge analysis using a time-frequency window

matched to a 200 Hz pitch.

Note that the F1 ridge and the steep F2 ridge are well resolved. Where F2 and F3

approximate, however, only a single ridge is found. Such mergers in the analysis

are more common in higher pitched speech due to the greater frequency smoothing

required. However, since less time smoothing is required than for lower pitched

speech, transient effects should, in principle, be better resolved.
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5.6 Transmission channel effects

Finally, we consider the effects of imperfect transmission channels on the analysis.

In particular, we will consider the effects of passing the speech signal through some

simple LTI filters. While the examples we give are idealized, natural environments

can give rise to many kinds of transmission channel characteristics. In general,

human listeners can tolerate a wide variety of alterations to a speech signal and

have it remain intelligible (see Licklider & Miller 1951 for a good reviewl. That is

not to say one is unaware of the modification; e.g., a pronounced room resonance

adds a 'hollow' quality to the speech, but it does not destroy its intelligibility.

Figure 5.15 shows the frequency response of the transmission channels we consider.

Figure 5.15a consists of a single pole at 1500 Hz of 750 Hz bandwidth, Figure

5.15b consists of a single pole at 1500 Hz of 150 Hz bandwidth, and Figure 5.15c

consists of a pole-zero pair - both are at 1500 Hz, the pole has 1000 Hz bandwidth

while the zero has 150 Hz bandwidth. Thus, the first channel consists of a fairly

broadband, but non-uniform channel; the second channel emphasizes the signal

energy in the neighborhood of 1500 Hz; and the third channel removes signal energy

in the neighborhood of 1500.

We show the effects of these transmission channels on the analysis of the utterance

/wioi/ from Section 2.9. Figure 5.16a shows the wideband spectrogram of this ut-

terance passed through the first channel, and Figure 5.16b shows the corresponding

ridge analysis. The effect of this broadband channel is minor when compared to

the original analysis in Figure 4.10. Figure 5.17a shows the wideband spectrogram

of the utterance passed through the second channel, and Figure 5.17b shows the

corresponding ridge analysis. The effect of this nafrowband channel is to add an
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additional ridge at 1500 Hz. Finally, Figure 5.18a shows the wideband spectrogram

of the utterance passed through the third channel, and Figure 5.18b shows the cor-

responding ridge analysis. The effect of this narrowband 'notch' is to put an energy

trough in the time-frequency surface, with the F2 ridge being partially cancelled

in the vicinity of this notch. Compare this analysis with the LPC analysis of this

filtered utterance shown in Figure 5.18c (using the same analysis parameters as in

Figure 4.1). We see there that the notch filter plays havoc with the LPC analysis,

since the zero lies outside the scope of its all-pole model. This is analogous to the

effects of nasalization on LPC analysis.
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Figure 5.14. /uiuiui/ uttered by an adult female. (a) ,Videband spectrogram. (b)

Ridge analysis.
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Figure 5.15. Transmission channels. (a) 750 Hz bandwidth pole at 1500 H~z (b)
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150 Hz bandwidth, respectively.
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Figure 5.17. /wioi/ passed through tranmission channel in Figure 5.15b (narrowi-

band filter). (a) Wideband spectrogram. (b) Ridge analysis.
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